ترغب بنشر مسار تعليمي؟ اضغط هنا

$mathfrak{sl}_2$-Harish-Chandra modules for $mathfrak{sl}_2 ltimes L(4)$

254   0   0.0 ( 0 )
 نشر من قبل Volodymyr Mazorchuk
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use analogues of Enrights and Arkhipovs functors to determine the quiver and relations for a category of $mathfrak{sl}_2 ltimes L(4)$-modules which are locally finite (and with finite multiplicities) over $mathfrak{sl}_2$. We also outline serious obstacles to extend our result to $mathfrak{sl}_2 ltimes L(k)$, for $k>4$.



قيم البحث

اقرأ أيضاً

Let $V$ be the two-dimensional simple module and $M$ be a projective Verma module for the quantum group of $mathfrak{sl}_2$ at generic $q$. We show that for any $rge 1$, the endomorphism algebra of $Motimes V^{otimes r}$ is isomorphic to the type $B$ Temperley-Lieb algebra $rm{TLB}_r(q, Q)$ for an appropriate parameter $Q$ depending on $M$. The parameter $Q$ is determined explicitly. We also use the cellular structure to determine precisely for which values of $r$ the endomorphism algebra is semisimple. A key element of our method is to identify the algebras $rm{TLB}_r(q,Q)$ as the endomorphism algebras of the objects in a quotient category of the category of coloured ribbon graphs of Freyd-Yetter or the tangle diagrams of Turaev and Reshitikhin.
We classify the simple bounded weight modules of ${mathfrak{sl}(infty})$, ${mathfrak{o}(infty)}$ and ${mathfrak{sp}(infty)}$, and compute their annihilators in $U({mathfrak{sl}(infty}))$, $U({mathfrak{o}(infty))}$, $U({mathfrak{sp}(infty))}$, respectively.
Let $k$ be an algebraically closed field of characteristic $p > 2$, let $n in mathbb Z_{>0} $, and take $G$ to be one of the classical algebraic groups $mathrm{GL}_n(k)$, $mathrm{SL}_n(k)$, $mathrm{Sp}_n(k)$, $mathrm O_n(k)$ or $mathrm{SO}_n(k)$, wit h $mathfrak g = operatorname{Lie} G$. We determine the maximal $G$-stable closed subvariety $mathcal V$ of the nilpotent cone $mathcal N$ of $mathfrak g$ such that the $G$-orbits in $mathcal V$ are in bijection with the $G$-orbits of $mathfrak{sl}_2$-triples $(e,h,f)$ with $e,f in mathcal V$. This result determines to what extent the theorems of Jacobson--Morozov and Kostant on $mathfrak{sl}_2$-triples hold for classical algebraic groups over an algebraically closed field of ``small odd characteristic.
93 - Nikita Nikolaev 2019
We prove a functorial correspondence between a category of logarithmic $mathfrak{sl}_2$-connections on a curve $X$ with fixed generic residues and a category of abelian logarithmic connections on an appropriate spectral double cover $pi : Sigma to X$ . The proof is by constructing a pair of inverse functors $pi^{text{ab}}, pi_{text{ab}}$, and the key is the construction of a certain canonical cocycle valued in the automorphisms of the direct image functor $pi_ast$.
Let $n>1$ be an integer, $alphain{mathbb C}^n$, $bin{mathbb C}$, and $V$ a $mathfrak{gl}_n$-module. We define a class of weight modules $F^alpha_{b}(V)$ over $sl_{n+1}$ using the restriction of modules of tensor fields over the Lie algebra of vector fields on $n$-dimensional torus. In this paper we consider the case $n=2$ and prove the irreducibility of such 5-parameter $mathfrak{sl}_{3}$-modules $F^alpha_{b}(V)$ generically. All such modules have infinite dimensional weight spaces and lie outside of the category of Gelfand-Tsetlin modules. Hence, this construction yields new families of irreducible $mathfrak{sl}_{3}$-modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا