ﻻ يوجد ملخص باللغة العربية
In the $Lambda$CDM model, dark energy is viewed as a constant vacuum energy density, the cosmological constant in the Einstein--Hilbert action. This assumption can be relaxed in various models that introduce a dynamical dark energy. In this letter, we argue that the mixing between infrared and ultraviolet degrees of freedom in quantum gravity lead to infinite statistics, the unique statistics consistent with Lorentz invariance in the presence of non-locality, and yield a fine structure for dark energy. Introducing IR and UV cutoffs into the quantum gravity action, we deduce the form of $Lambda$ as a function of redshift and translate this to the behavior of the Hubble parameter.
We further develop the gravitational model, Thomas-Whitehead Gravity (TW Gravity), that arises when projective connections become dynamical fields. TW Gravity has its origins in geometric actions from string theory where the TW projective connection
By using the conserved currents associated to the diffeomorphism invariance, we study dynamical holographic systems and the relation between thermodynamical and dynamical stability of such systems. The case with fixed space-time backgrounds is discus
We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called
The today estimated value of dark energy can be achieved by the vacuum condensate induced by neutrino mixing phenomenon. Such a tiny value is recovered for a cut-off of the order of Planck scale and it is linked to the sub eV neutrino mass scale. Con
Casimir energy is calculated for 5D scalar theory in the {it warped} geometry. A new regularization, called {it sphere lattice regularization}, is taken. The regularized configuration is {it closed-string like}. We numerically evaluate $La$(4D UV-cut