ترغب بنشر مسار تعليمي؟ اضغط هنا

Dialog Simulation with Realistic Variations for Training Goal-Oriented Conversational Systems

122   0   0.0 ( 0 )
 نشر من قبل Chien-Wei Lin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Goal-oriented dialog systems enable users to complete specific goals like requesting information about a movie or booking a ticket. Typically the dialog system pipeline contains multiple ML models, including natural language understanding, state tracking and action prediction (policy learning). These models are trained through a combination of supervised or reinforcement learning methods and therefore require collection of labeled domain specific datasets. However, collecting annotated datasets with language and dialog-flow variations is expensive, time-consuming and scales poorly due to human involvement. In this paper, we propose an approach for automatically creating a large corpus of annotated dialogs from a few thoroughly annotated sample dialogs and the dialog schema. Our approach includes a novel goal-sampling technique for sampling plausible user goals and a dialog simulation technique that uses heuristic interplay between the user and the system (Alexa), where the user tries to achieve the sampled goal. We validate our approach by generating data and training three different downstream conversational ML models. We achieve 18 ? 50% relative accuracy improvements on a held-out test set compared to a baseline dialog generation approach that only samples natural language and entity value variations from existing catalogs but does not generate any novel dialog flow variations. We also qualitatively establish that the proposed approach is better than the baseline. Moreover, several different conversational experiences have been built using this method, which enables customers to have a wide variety of conversations with Alexa.



قيم البحث

اقرأ أيضاً

We propose a novel methodology to address dialog learning in the context of goal-oriented conversational systems. The key idea is to quantize the dialog space into clusters and create a language model across the clusters, thus allowing for an accurat e choice of the next utterance in the conversation. The language model relies on n-grams associated with clusters of utterances. This quantized-dialog language model methodology has been applied to the end-to-end goal-oriented track of the latest Dialog System Technology Challenges (DSTC6). The objective is to find the correct system utterance from a pool of candidates in order to complete a dialog between a user and an automated restaurant-reservation system. Our results show that the technique proposed in this paper achieves high accuracy regarding selection of the correct candidate utterance, and outperforms other state-of-the-art approaches based on neural networks.
Existing benchmarks used to evaluate the performance of end-to-end neural dialog systems lack a key component: natural variation present in human conversations. Most datasets are constructed through crowdsourcing, where the crowd workers follow a fix ed template of instructions while enacting the role of a user/agent. This results in straight-forward, somewhat routine, and mostly trouble-free conversations, as crowd workers do not think to represent the full range of actions that occur naturally with real users. In this work, we investigate the impact of naturalistic variation on two goal-oriented datasets: bAbI dialog task and Stanford Multi-Domain Dataset (SMD). We also propose new and more effective testbeds for both datasets, by introducing naturalistic variation by the user. We observe that there is a significant drop in performance (more than 60% in Ent. F1 on SMD and 85% in per-dialog accuracy on bAbI task) of recent state-of-the-art end-to-end neural methods such as BossNet and GLMP on both datasets.
The recent success of large pre-trained language models such as BERT and GPT-2 has suggested the effectiveness of incorporating language priors in downstream dialog generation tasks. However, the performance of pre-trained models on the dialog task i s not as optimal as expected. In this paper, we propose a Pre-trained Role Alternating Language model (PRAL), designed specifically for task-oriented conversational systems. We adopted (Wu et al., 2019) that models two speakers separately. We also design several techniques, such as start position randomization, knowledge distillation, and history discount to improve pre-training performance. We introduce a task-oriented dialog pretraining dataset by cleaning 13 existing data sets. We test PRAL on three different downstream tasks. The results show that PRAL performs better or on par with state-of-the-art methods.
Task oriented language understanding in dialog systems is often modeled using intents (task of a query) and slots (parameters for that task). Intent detection and slot tagging are, in turn, modeled using sentence classification and word tagging techn iques respectively. Similar to adversarial attack problems with computer vision models discussed in existing literature, these intent-slot tagging models are often over-sensitive to small variations in input -- predicting different and often incorrect labels when small changes are made to a query, thus reducing their accuracy and reliability. However, evaluating a models robustness to these changes is harder for language since words are discrete and an automated change (e.g. adding `noise) to a query sometimes changes the meaning and thus labels of a query. In this paper, we first describe how to create an adversarial test set to measure the robustness of these models. Furthermore, we introduce and adapt adversarial training methods as well as data augmentation using back-translation to mitigate these issues. Our experiments show that both techniques improve the robustness of the system substantially and can be combined to yield the best results.
Recent work (Takanobu et al., 2020) proposed the system-wise evaluation on dialog systems and found that improvement on individual components (e.g., NLU, policy) in prior work may not necessarily bring benefit to pipeline systems in system-wise evalu ation. To improve the system-wise performance, in this paper, we propose new joint system-wise optimization techniques for the pipeline dialog system. First, we propose a new data augmentation approach which automates the labeling process for NLU training. Second, we propose a novel stochastic policy parameterization with Poisson distribution that enables better exploration and offers a principled way to compute policy gradient. Third, we propose a reward bonus to help policy explore successful dialogs. Our approaches outperform the competitive pipeline systems from Takanobu et al. (2020) by big margins of 12% success rate in automatic system-wise evaluation and of 16% success rate in human evaluation on the standard multi-domain benchmark dataset MultiWOZ 2.1, and also outperform the recent state-of-the-art end-to-end trained model from DSTC9.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا