ﻻ يوجد ملخص باللغة العربية
In this paper we will study the asymptotic behaviour of certain widths of the embeddings $ mathcal{A}_omega(mathbb{T}^d) to L_p(mathbb{T}^d)$, $2le p le infty$, and $ mathcal{A}_omega(mathbb{T}^d) to mathcal{A}(mathbb{T}^d)$, where $mathcal{A}_{omega}(mathbb{T}^d)$ is the weighted Wiener class and $mathcal{A}(mathbb{T}^d)$ is the Wiener algebra on the $d$-dimensional torus $mathbb{T}^d$. Our main interest will consist in the calculation of the associated asymptotic constant. As one of the consequences we also obtain the asymptotic constant related to the embedding $id: C^m_{rm mix}(mathbb{T}^d) to L_2(mathbb{T}^d)$ for Weyl and Bernstein numbers.
Let $0<p,qleq infty$ and denote by $mathcal{S}_p^N$ and $mathcal{S}_q^N$ the corresponding Schatten classes of real $Ntimes N$ matrices. We study the Gelfand numbers of natural identities $mathcal{S}_p^Nhookrightarrow mathcal{S}_q^N$ between Schatten
We develop real Paley-Wiener theorems for classes ${mathcal S}_omega$ of ultradifferentiable functions and related $L^{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor tra
Entangled embedded periodic nets and crystal frameworks are defined, along with their dimension type, homogeneity type, adjacency depth and periodic isotopy type. We obtain periodic isotopy classifications for various families of embedded nets with s
Let $PW_S^1$ be the space of integrable functions on $mathbb{R}$ whose Fourier transform vanishes outside $S$, where $S = [-sigma,-rho]cup[rho,sigma]$, $0<rho<sigma$. In the case $rho>sigma/2$, we present a complete description of the extreme points
In this paper, we characterize hypercyclic sequences of weighted translation operators on an Orlicz space in the context of locally compact hypergroups.