ترغب بنشر مسار تعليمي؟ اضغط هنا

Inference for High-dimensional Maximin Effects in Heterogeneous Regression Models Using a Sampling Approach

267   0   0.0 ( 0 )
 نشر من قبل Zijian Guo
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Zijian Guo




اسأل ChatGPT حول البحث

Heterogeneity is an important feature of modern data sets and a central task is to extract information from large-scale and heterogeneous data. In this paper, we consider multiple high-dimensional linear models and adopt the definition of maximin effect (Meinshausen, B{u}hlmann, AoS, 43(4), 1801--1830) to summarize the information contained in this heterogeneous model. We define the maximin effect for a targeted population whose covariate distribution is possibly different from that of the observed data. We further introduce a ridge-type maximin effect to simultaneously account for reward optimality and statistical stability. To identify the high-dimensional maximin effect, we estimate the regression covariance matrix by a debiased estimator and use it to construct the aggregation weights for the maximin effect. A main challenge for statistical inference is that the estimated weights might have a mixture distribution and the resulted maximin effect estimator is not necessarily asymptotic normal. To address this, we devise a novel sampling approach to construct the confidence interval for any linear contrast of high-dimensional maximin effects. The coverage and precision properties of the proposed confidence interval are studied. The proposed method is demonstrated over simulations and a genetic data set on yeast colony growth under different environments.



قيم البحث

اقرأ أيضاً

There are many scenarios such as the electronic health records where the outcome is much more difficult to collect than the covariates. In this paper, we consider the linear regression problem with such a data structure under the high dimensionality. Our goal is to investigate when and how the unlabeled data can be exploited to improve the estimation and inference of the regression parameters in linear models, especially in light of the fact that such linear models may be misspecified in data analysis. In particular, we address the following two important questions. (1) Can we use the labeled data as well as the unlabeled data to construct a semi-supervised estimator such that its convergence rate is faster than the supervised estimators? (2) Can we construct confidence intervals or hypothesis tests that are guaranteed to be more efficient or powerful than the supervised estimators? To address the first question, we establish the minimax lower bound for parameter estimation in the semi-supervised setting. We show that the upper bound from the supervised estimators that only use the labeled data cannot attain this lower bound. We close this gap by proposing a new semi-supervised estimator which attains the lower bound. To address the second question, based on our proposed semi-supervised estimator, we propose two additional estimators for semi-supervised inference, the efficient estimator and the safe estimator. The former is fully efficient if the unknown conditional mean function is estimated consistently, but may not be more efficient than the supervised approach otherwise. The latter usually does not aim to provide fully efficient inference, but is guaranteed to be no worse than the supervised approach, no matter whether the linear model is correctly specified or the conditional mean function is consistently estimated.
Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and u nstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.
204 - Sai Li , Tony T. Cai , Hongzhe Li 2019
Linear mixed-effects models are widely used in analyzing clustered or repeated measures data. We propose a quasi-likelihood approach for estimation and inference of the unknown parameters in linear mixed-effects models with high-dimensional fixed eff ects. The proposed method is applicable to general settings where the dimension of the random effects and the cluster sizes are possibly large. Regarding the fixed effects, we provide rate optimal estimators and valid inference procedures that do not rely on the structural information of the variance components. We also study the estimation of variance components with high-dimensional fixed effects in general settings. The algorithms are easy to implement and computationally fast. The proposed methods are assessed in various simulation settings and are applied to a real study regarding the associations between body mass index and genetic polymorphic markers in a heterogeneous stock mice population.
We consider the problem of jointly modeling and clustering populations of tensors by introducing a flexible high-dimensional tensor mixture model with heterogeneous covariances. The proposed mixture model exploits the intrinsic structures of tensor d ata, and is assumed to have means that are low-rank and internally sparse as well as heterogeneous covariances that are separable and conditionally sparse. We develop an efficient high-dimensional expectation-conditional-maximization (HECM) algorithm that breaks the challenging optimization in the M-step into several simpler conditional optimization problems, each of which is convex, admits regularization and has closed-form updating formulas. We show that the proposed HECM algorithm, with an appropriate initialization, converges geometrically to a neighborhood that is within statistical precision of the true parameter. Such a theoretical analysis is highly nontrivial due to the dual non-convexity arising from both the EM-type estimation and the non-convex objective function in the M-step. The efficacy of our proposed method is demonstrated through simulation studies and an application to an autism spectrum disorder study, where our analysis identifies important brain regions for diagnosis.
In the context of a high-dimensional linear regression model, we propose the use of an empirical correlation-adaptive prior that makes use of information in the observed predictor variable matrix to adaptively address high collinearity, determining i f parameters associated with correlated predictors should be shrunk together or kept apart. Under suitable conditions, we prove that this empirical Bayes posterior concentrates around the true sparse parameter at the optimal rate asymptotically. A simplified version of a shotgun stochastic search algorithm is employed to implement the variable selection procedure, and we show, via simulation experiments across different settings and a real-data application, the favorable performance of the proposed method compared to existing methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا