ﻻ يوجد ملخص باللغة العربية
Lattice models consisting of high-dimensional local degrees of freedom without global particle-number conservation constitute an important problem class in the field of strongly correlated quantum many-body systems. For instance, they are realized in electron-phonon models, cavities, atom-molecule resonance models, or superconductors. In general, these systems elude a complete analytical treatment and need to be studied using numerical methods where matrix-product states (MPS) provide a flexible and generic ansatz class. Typically, MPS algorithms scale at least quadratic in the dimension of the local Hilbert spaces. Hence, tailored methods, which truncate this dimension, are required to allow for efficient simulations. Here, we describe and compare three state-of-the-art MPS methods each of which exploits a different approach to tackle the computational complexity. We analyze the properties of these methods for the example of the Holstein model, performing high-precision calculations as well as a finite-size-scaling analysis of relevant ground-state obervables. The calculations are performed at different points in the phase diagram yielding a comprehensive picture of the different approaches.
Models whose ground states can be written as an exact matrix product state (MPS) provide valuable insights into phases of matter. While MPS-solvable models are typically studied as isolated points in a phase diagram, they can belong to a connected ne
We present a unified framework for renormalization group methods, including Wilsons numerical renormalization group (NRG) and Whites density-matrix renormalization group (DMRG), within the language of matrix product states. This allows improvements o
We derive an exact matrix product state representation of the Haldane-Rezayi state on both the cylinder and torus geometry. Our derivation is based on the description of the Haldane-Rezayi state as a correlator in a non-unitary logarithmic conformal
The Lieb-Liniger model describes one-dimensional bosons interacting through a repulsive contact potential. In this work, we introduce an extended version of this model by replacing the contact potential with a decaying exponential. Using the recently
The density-matrix renormalization group method has become a standard computational approach to the low-energy physics as well as dynamics of low-dimensional quantum systems. In this paper, we present a new set of applications, available as part of t