ﻻ يوجد ملخص باللغة العربية
The density-matrix renormalization group method has become a standard computational approach to the low-energy physics as well as dynamics of low-dimensional quantum systems. In this paper, we present a new set of applications, available as part of the ALPS package, that provide an efficient and flexible implementation of these methods based on a matrix-product state (MPS) representation. Our applications implement, within the same framework, algorithms to variationally find the ground state and low-lying excited states as well as simulate the time evolution of arbitrary one-dimensional and two-dimensional models. Implementing the conservation of quantum numbers for generic Abelian symmetries, we achieve performance competitive with the best codes in the community. Example results are provided for (i) a model of itinerant fermions in one dimension and (ii) a model of quantum magnetism.
We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quan
We prove that ground states of gapped local Hamiltonians on an infinite spin chain can be efficiently approximated by matrix product states with a bond dimension which scales as D~(L-1)/epsilon, where any local quantity on L consecutive spins is approximated to accuracy epsilon.
While general quantum many-body systems require exponential resources to be simulated on a classical computer, systems of non-interacting fermions can be simulated exactly using polynomially scaling resources. Such systems may be of interest in their
We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quant
We present a unified framework for renormalization group methods, including Wilsons numerical renormalization group (NRG) and Whites density-matrix renormalization group (DMRG), within the language of matrix product states. This allows improvements o