ﻻ يوجد ملخص باللغة العربية
The magnetic breakout model, in which reconnection in the corona leads to destabilization of a filament channel, explains numerous features of eruptive solar events, from small-scale jets to global-scale coronal mass ejections (CMEs). The underlying multipolar topology, pre-eruption activities, and sequence of magnetic reconnection onsets (first breakout, then flare) of many observed fast CMEs/eruptive flares are fully consistent with the model. Recently, we have demonstrated that most observed coronal-hole jets in fan/spine topologies also are induced by breakout reconnection at the null point above a filament channel (with or without a filament). For these two types of eruptions occurring in similar topologies, the key question is, why do some events generate jets while others form CMEs? We focused on the initiation of eruptions in large bright points/small active regions that were located in coronal holes and clearly exhibited null-point (fan/spine) topologies: such configurations are referred to as pseudostreamers. We analyzed and compared SDO/AIA, SOHO/LASCO, and RHESSI observations of three events. Our analysis of the events revealed two new observable signatures of breakout reconnection prior to the explosive jet/CME outflows and flare onset: coronal dimming and the opening-up of field lines above the breakout current sheet. Most key properties were similar among the selected erupting structures, thereby eliminating region size, photospheric field strength, magnetic configuration, and pre-eruptive evolution as discriminating factors between jets and CMEs. We consider the factors that contribute to the different types of dynamic behavior, and conclude that the main determining factor is the ratio of the magnetic free energy associated with the filament channel compared to the energy associated with the overlying flux inside and outside the pseudostreamer dome.
We report on the first observation of a single hybrid magnetic structure that contains both a pseudostreamer and a double helmet streamer. This structure was originally observed by the SWAP instrument aboard the PROBA2 satellite between 5 and 10~May~
Recent observations have revealed that many solar coronal jets involve the eruption of miniatu
In this review we focus on the role jets and outflows play in the star and planet formation process. Our essential question can be posed as follows: are jets/outflows merely an epiphenomenon associated with star formation or do they play an important
We present results from three weeks photometric monitoring of the magnetic helium-strong star sigma Ori E using the MOST microsatellite. The stars light curve is dominated by twice-per-rotation eclipse-like dimmings arising when magnetospheric clouds
We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments aboard NASAs twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 201