ﻻ يوجد ملخص باللغة العربية
We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments aboard NASAs twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras. More specifically, in this paper we present distributions of the basic observational parameters - namely occurrence frequency, central position angle (PA) and PA span - derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites dont simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes while, at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude as they propagate outwards.
We present an analysis of coronal mass ejections (CMEs) observed by the Heliospheric Imagers (HIs) on board NASAs Solar Terrestrial Relations Observatory (STEREO) spacecraft. Between August 2008 and April 2014 we identify 273 CMEs that are observed s
The interaction of multiple Coronal Mass Ejections (CMEs) has been observed by LASCO coronagraphs and by near-Earth spacecraft, and it is thought to be an important cause of geo-effective storms, large Solar Energetic Particles events and intense Typ
Solar eruptions are usually associated with a variety of phenomena occurring in the low corona before, during, and after onset of eruption. Though easily visible in coronagraph observations, so-called stealth coronal mass ejections (CMEs) do not obvi
The magnetic breakout model, in which reconnection in the corona leads to destabilization of a filament channel, explains numerous features of eruptive solar events, from small-scale jets to global-scale coronal mass ejections (CMEs). The underlying
We analyze magnetic field data from the first six encounters of PSP, three Helios fast streams and two Ulysses south polar passes covering heliocentric distances $0.1lesssim Rlesssim 3$ au. We use this data set to statistically determine the evolutio