ترغب بنشر مسار تعليمي؟ اضغط هنا

What determines the structure of short gamma-ray burst jets?

84   0   0.0 ( 0 )
 نشر من قبل Gerardo Urrutia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of GRB 170817A, the first unambiguous off-axis short gamma-ray burst arising from a neutron star merger, has challenged our understanding of the angular structure of relativistic jets. Studies of the jet propagation usually assume that the jet is ejected from the central engine with a top-hat structure and its final structure, which determines the observed light curve and spectra, is primarily regulated by the interaction with the nearby environment. However, jets are expected to be produced with a structure that is more complex than a simple top-hat, as shown by global accretion simulations. We present numerical simulations of short GRBs launched with a wide range of initial structures, durations and luminosities. We follow the jet interaction with the merger remnant wind and compute its final structure at distances $gtrsim 10^{11}$~cm from the central engine. We show that the final jet structure, as well as the resulting afterglow emission, depend strongly on the initial structure of the jet, its luminosity and duration. While the initial structure at the jet is preserved for long-lasting SGRBs, it is strongly modified for jets barely making their way through the wind. This illustrates the importance of combining the results of global simulations with propagation studies in order to better predict the expected afterglow signatures from neutron star mergers. Structured jets provide a reasonable description of the GRB 170817A afterglow emission with an off-axis angle $theta_{rm obs} approx 22.5^circ$.



قيم البحث

اقرأ أيضاً

After being launched, GRB jets propagate through dense media prior to their breakout. The jet-medium interaction results in the formation of a complex structured outflow, often referred to as a structured jet. The underlying physics of the jet-medium interaction that sets the post-breakout jet morphology has never been explored systematically. Here we use a suite of 3D simulations to follow the evolution of hydrodynamic long and short gamma-ray bursts (GRBs) jets after breakout to study the post-breakout structure induced by the interaction. Our simulations feature Rayleigh-Taylor fingers that grow from the cocoon into the jet, mix cocoon with jet material and destabilize the jet. The mixing gives rise to a previously unidentified region sheathing the jet from the cocoon, which we denote the jet-cocoon interface (JCI). long GRBs undergo strong mixing, resulting in most of the jet energy to drift into the JCI, while in short GRBs weaker mixing is possible, leading to a comparable amount of energy in the two components. Remarkably, the jet structure (jet-core plus JCI) can be characterized by simple universal angular power-law distributions, with power-law indices that depend solely on the mixing level. This result supports the commonly used power-law angular distribution, and disfavors Gaussian jets. At larger angles, where the cocoon dominates, the structure is more complex. The mixing shapes the prompt emission light curve and implies that typical long GRB afterglows are different from those of short GRBs. Our predictions can be used to infer jet characteristics from prompt and afterglow observations.
The interaction of gamma-ray burst (GRB) jets with the dense media into which they are launched promote the growth of local hydrodynamic instabilities along the jet boundary. In a companion paper we study the evolution of hydrodynamic (unmagnetized) jets, finding that mixing of jet-cocoon material gives rise to an interface layer, termed jet-cocoon interface (JCI), which contains a significant fraction of the system energy. We find that the angular structure of the jet + JCI, when they reach the homologous phase, can be approximated by a flat core (the jet) + a power-law function (the JCI) with indices that depend on the degree of mixing. In this paper we examine the effect of subdominant toroidal magnetic fields on the jet evolution and morphology. We find that weak fields can stabilize the jet against local instabilities. The suppression of the mixing diminishes the JCI and thus reshapes the jets post-breakout structure. Nevertheless, the overall shape of the outflow can still be approximated by a flat core + a power-law function, although the JCI power-law decay is steeper. The effect of weak fields is more prominent in long GRB jets, where the mixing in hydrodynamic jets is stronger. In short GRB jets there is small mixing in both weakly magnetized and unmagnetized jets. This result influences the expected jet emission which is governed by the jets morphology. Therefore, prompt and afterglow observations in long GRBs may be used as probes for the magnetic nature at the base of the jets.
A structured gamma-ray burst jet could explain the dimness of the prompt emission observed from GRB$,170817$A but the exact form of this structure is still ambiguous. However, with the promise of future joint gravitational wave and gamma-ray burst ob servations, we shall be able to examine populations of binary neutron star mergers rather than a case-by-case basis. We present an analysis that considers gravitational wave triggered binary neutron star events both with and without short gamma-ray burst counterparts assuming that events without a counterpart were observed off-axis. This allows for Bayes factors to be calculated to compare different jet structure models. We perform model comparison between a Gaussian and power-law apparent jet structure on simulated data to demonstrate that the correct model can be distinguished with a log Bayes factor of $>5$ after less than 100 events. Constraints on the apparent structure jet model parameters are also made. After 25(100) events the angular width of the core of a power-law jet structure can be constrained within a $90%$ credible interval of width $ sim9.1(4.4)^{circ} $, and the outer beaming angle to be within $sim19.9(8.5)^{circ}$. Similarly we show the width of a Gaussian jet structure to be constrained to $sim2.8(1.6)^{circ}$.
The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing a successful sGRB. Soon after coalescence, winds are launched from the merger remnant. In this paper, we use realistic wind profiles derived from global merger simulations in order to investigate the interaction of sGRB jets with these winds using numerical simulations. We analyze the conditions for which these axisymmetric winds permit relativistic jets to breakout and produce a sGRB. We find that jets with luminosities comparable to those observed in sGRBs are only successful when their half-opening angles are below ~20{deg}. This jet collimation mechanism leads to a simple physical interpretation of the luminosities and opening angles inferred for sGRBs. If wide, low luminosity jets are observed, they might be indicative of a different progenitor avenue such as the merger of a neutron star with a black hole. We also use the observed durations of sGRB to place constraints on the lifetime of the wind phase, which is determined by the time it takes the jet to breakout. In all cases we find that the derived limits argue against completely stable remnants for binary neutron star mergers that produce sGRBs.
Aims. With an observed and rest-frame duration of < 2s and < 0.5s, respectively, GRB090426 could be classified as a short GRB. The prompt detection, both from space and ground-based telescopes, of a bright optical counterpart to this GRB offered a un ique opportunity to complete a detailed study. Methods. Based on an extensive ground-based observational campaign, we obtained the spectrum of the optical afterglow of GRB090426, measuring its redshift and obtaining information about the medium in which the event took place. We completed follow-up observation of the afterglow optical light curve down to the brightness level of the host galaxy that we firmly identified and studied. We also retrieved and analyzed all the available high-energy data of this event, and compared the results with our findings in the optical. This represents one of the most detailed studies of a short-duration event presented so far. Results. The time properties qualify GRB090426 as a short burst. In this case, its redshift of z = 2.61 would be the highest yet found for a GRB of this class. On the other hand, the spectral and energy properties are more similar to those of long bursts. LBT late-time deep imaging identifies a star-forming galaxy at a redshift consistent with that of the GRB. The afterglow lies within the light of its host and shows evidence of local absorption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا