ﻻ يوجد ملخص باللغة العربية
A structured gamma-ray burst jet could explain the dimness of the prompt emission observed from GRB$,170817$A but the exact form of this structure is still ambiguous. However, with the promise of future joint gravitational wave and gamma-ray burst observations, we shall be able to examine populations of binary neutron star mergers rather than a case-by-case basis. We present an analysis that considers gravitational wave triggered binary neutron star events both with and without short gamma-ray burst counterparts assuming that events without a counterpart were observed off-axis. This allows for Bayes factors to be calculated to compare different jet structure models. We perform model comparison between a Gaussian and power-law apparent jet structure on simulated data to demonstrate that the correct model can be distinguished with a log Bayes factor of $>5$ after less than 100 events. Constraints on the apparent structure jet model parameters are also made. After 25(100) events the angular width of the core of a power-law jet structure can be constrained within a $90%$ credible interval of width $ sim9.1(4.4)^{circ} $, and the outer beaming angle to be within $sim19.9(8.5)^{circ}$. Similarly we show the width of a Gaussian jet structure to be constrained to $sim2.8(1.6)^{circ}$.
The discovery of GRB 170817A, the first unambiguous off-axis short gamma-ray burst arising from a neutron star merger, has challenged our understanding of the angular structure of relativistic jets. Studies of the jet propagation usually assume that
The counter jet of a short gamma-ray burst (sGRB) has not yet been observed, while recent discoveries of gravitational waves (GWs) from a binary neutron star (NS) merger GW170817 and the associated sGRB 170817A have demonstrated that off-axis sGRB je
Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow lightcurve allows a measurement of the jet opening angle and tru
The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of
Aims. With an observed and rest-frame duration of < 2s and < 0.5s, respectively, GRB090426 could be classified as a short GRB. The prompt detection, both from space and ground-based telescopes, of a bright optical counterpart to this GRB offered a un