ﻻ يوجد ملخص باللغة العربية
Memory or transistor devices based on electrons spin rather than its charge degree of freedom offer certain distinct advantages and comprise a cornerstone of spintronics. Recent years have witnessed the emergence of a new field, valleytronics, which seeks to exploit electrons valley index rather than its spin. An important component in this quest would be the ability to control the valley index in a convenient fashion. Here we show that the valley polarization can be switched from zero to one by a small reduction in density, simply tuned by a gate bias, in a two-dimensional electron system. This phenomenon arises fundamentally as a result of electron-electron interaction in an itinerant, dilute electron system. Essentially, the kinetic energy favors an equal distribution of electrons over the available valleys, whereas the interaction between electrons prefers single-valley occupancy below a critical density. The gate-bias-tuned transition we observe is accompanied by a sudden, two-fold change in sample resistance, making the phenomenon of interest for potential valleytronic transistor device applications. Our observation constitutes a quintessential demonstration of valleytronics in a very simple experiment.
We report magneto-absorption spectroscopy of gated WSe$_2$ monolayers in high magnetic fields up to 60~T. When doped with a 2D Fermi sea of mobile holes, well-resolved sequences of optical transitions are observed in both $sigma^pm$ circular polariza
We use a first-principles density functional theory approach to calculate the shift current and linear absorption of uniformly illuminated single-layer Ge and Sn monochalcogenides. We predict strong absorption in the visible spectrum and a large effe
The tensile strain is a promising tool for creation and manipulation of magnetic solitonic textures in the chiral helimagnets via tunable control of magnetic anisotropy and Dzyaloshinskii-Moriya interaction. Here, by using the in-situ resonant small-
2D materials based superlattices have emerged as a promising platform to modulate band structure and its symmetries. In particular, moire periodicity in twisted graphene systems produces flat Chern bands. The recent observation of anomalous Hall effe
We compute the valley/magnetic phase diagram of mono layers of transition metal dichalcogenides in the hole doped region where spin-orbit effects are particularly relevant. Taking into account the moderate to high local electron-electron interactions