ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of spontaneous valley polarization of itinerant electrons

221   0   0.0 ( 0 )
 نشر من قبل Md Shafayat Hossain
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Memory or transistor devices based on electrons spin rather than its charge degree of freedom offer certain distinct advantages and comprise a cornerstone of spintronics. Recent years have witnessed the emergence of a new field, valleytronics, which seeks to exploit electrons valley index rather than its spin. An important component in this quest would be the ability to control the valley index in a convenient fashion. Here we show that the valley polarization can be switched from zero to one by a small reduction in density, simply tuned by a gate bias, in a two-dimensional electron system. This phenomenon arises fundamentally as a result of electron-electron interaction in an itinerant, dilute electron system. Essentially, the kinetic energy favors an equal distribution of electrons over the available valleys, whereas the interaction between electrons prefers single-valley occupancy below a critical density. The gate-bias-tuned transition we observe is accompanied by a sudden, two-fold change in sample resistance, making the phenomenon of interest for potential valleytronic transistor device applications. Our observation constitutes a quintessential demonstration of valleytronics in a very simple experiment.



قيم البحث

اقرأ أيضاً

We report magneto-absorption spectroscopy of gated WSe$_2$ monolayers in high magnetic fields up to 60~T. When doped with a 2D Fermi sea of mobile holes, well-resolved sequences of optical transitions are observed in both $sigma^pm$ circular polariza tions, which unambiguously and separately indicate the number of filled Landau levels (LLs) in both $K$ and $K$ valleys. This reveals the interaction-enhanced valley Zeeman energy, which is found to be highly tunable with hole density $p$. We exploit this tunability to align the LLs in $K$ and $K$, and find that the 2D hole gas becomes unstable against small changes in LL filling and can spontaneously valley-polarize. These results cannot be understood within a single-particle picture, highlighting the importance of exchange interactions in determining the ground state of 2D carriers in monolayer semiconductors.
We use a first-principles density functional theory approach to calculate the shift current and linear absorption of uniformly illuminated single-layer Ge and Sn monochalcogenides. We predict strong absorption in the visible spectrum and a large effe ctive three-dimensional shift current ($sim$100 $mu$A/V$^2$), larger than has been previously observed in other polar systems. Moreover, we show that the integral of the shift-current tensor is correlated to the large spontaneous effective three-dimensional electric polarization ($sim$1.9 C/m$^2$). Our calculations indicate that the shift current will be largest in the visible spectrum, suggesting that these monochalcogenides may be promising for polar optoelectronic devices. A Rice-Mele tight-binding model is used to rationalize the shift-current response for these systems, and its dependence on polarization, in general terms with implications for other polar materials
The tensile strain is a promising tool for creation and manipulation of magnetic solitonic textures in the chiral helimagnets via tunable control of magnetic anisotropy and Dzyaloshinskii-Moriya interaction. Here, by using the in-situ resonant small- angle x-ray scattering we demonstrate that the skyrmion and chiral soliton lattices can be achieved as metastable states in FeGe lamella as distinct states or even simultaneously by combining the tensile strain and magnetic fields in various orientations with respect to the deformation. The small-angle scattering data are discussed in the frame of the analytical model which is sufficient to describe the experimental results for soliton lattice. By using the experimental results and analytical theory, unwinding of the metastable skyrmions in the perpendicular magnetic field as seen by small-angle scattering experiment was analyzed by the micromagnetic simulation.
2D materials based superlattices have emerged as a promising platform to modulate band structure and its symmetries. In particular, moire periodicity in twisted graphene systems produces flat Chern bands. The recent observation of anomalous Hall effe ct (AHE) and orbital magnetism in twisted bilayer graphene has been associated with spontaneous symmetry breaking of such Chern bands. However, the valley Hall state as a precursor of AHE state, when time-reversal symmetry is still protected, has not been observed. Our work probes this precursor state using the valley Hall effect. We show that broken inversion symmetry in twisted double bilayer graphene (TDBG) facilitates the generation of bulk valley current by reporting the first experimental evidence of nonlocal transport in a nearly flat band system. Despite the spread of Berry curvature hotspots and reduced quasiparticle velocities of the carriers in these flat bands, we observe large nonlocal voltage several micrometers away from the charge current path -- this persists when the Fermi energy lies inside a gap with large Berry curvature. The high sensitivity of the nonlocal voltage to gate tunable carrier density and gap modulating perpendicular electric field makes TDBG an attractive platform for valley-twistronics based on flat bands.
We compute the valley/magnetic phase diagram of mono layers of transition metal dichalcogenides in the hole doped region where spin-orbit effects are particularly relevant. Taking into account the moderate to high local electron-electron interactions due to the presence of transition metal atoms, we show that the system is unstable to an itinerant ferromagnetic phase where all charge carriers are spin and valley polarized. This phase shows an anomalous charge Hall and anomalous spin-Hall response, and may thus be detected experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا