ﻻ يوجد ملخص باللغة العربية
2D materials based superlattices have emerged as a promising platform to modulate band structure and its symmetries. In particular, moire periodicity in twisted graphene systems produces flat Chern bands. The recent observation of anomalous Hall effect (AHE) and orbital magnetism in twisted bilayer graphene has been associated with spontaneous symmetry breaking of such Chern bands. However, the valley Hall state as a precursor of AHE state, when time-reversal symmetry is still protected, has not been observed. Our work probes this precursor state using the valley Hall effect. We show that broken inversion symmetry in twisted double bilayer graphene (TDBG) facilitates the generation of bulk valley current by reporting the first experimental evidence of nonlocal transport in a nearly flat band system. Despite the spread of Berry curvature hotspots and reduced quasiparticle velocities of the carriers in these flat bands, we observe large nonlocal voltage several micrometers away from the charge current path -- this persists when the Fermi energy lies inside a gap with large Berry curvature. The high sensitivity of the nonlocal voltage to gate tunable carrier density and gap modulating perpendicular electric field makes TDBG an attractive platform for valley-twistronics based on flat bands.
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alp
Starting with twisted bilayer graphene, graphene-based moire materials have recently been established as a new platform for studying strong electron correlations. In this paper, we study twisted graphene monolayers on trilayer graphene and demonstrat
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns ha
We predict that in a twisted homobilayer of transition-metal dichalcogenide MoS$_2$, spin-orbit coupling in the conduction band states from $pm K$ valleys can give rise to moir{e} flat bands with nonzero Chern numbers in each valley. The nontrivial b
Complex oxide interfaces are a promising platform for studying a wide array of correlated electron phenomena in low-dimensions, including magnetism and superconductivity. The microscopic origin of these phenomena in complex oxide interfaces remains a