ﻻ يوجد ملخص باللغة العربية
In this paper we study Cohen-Macaulay local rings of dimension $d$, multiplicity $e$ and second Hilbert coefficient $e_2$ in the case $e_2 = e_1 - e + 1$. Let $h = mu(mathfrak{m}) - d$. If $e_2 eq 0$ then in our case we can prove that type $A geq e - h -1$. If type $A = e - h -1$ then we show that the associated graded ring $G(A)$ is Cohen-Macaulay. In the next case when type $A = e - h$ we determine all possible Hilbert series of $A$. In this case we show that the Hilbert Series of $A$ completely determines depth $G(A)$.
In this paper we determine the possible Hilbert functions of a Cohen-Macaulay local ring of dimension $d$, multiplicity $e$ and first Hilbert coefficient $e_1$ in the case $e_1 = e + 2$.
Let $ R $ be a $ d $-dimensional Cohen-Macaulay (CM) local ring of minimal multiplicity. Set $ S := R/({bf f}) $, where $ {bf f} := f_1,ldots,f_c $ is an $ R $-regular sequence. Suppose $ M $ and $ N $ are maximal CM $ S $-modules. It is shown that i
The goal of the present paper is the study of some algebraic invariants of Stanley-Reisner rings of Cohen-Macaulay simplicial complexes of dimension $d - 1$. We prove that the inequality $d leq mathrm{reg}(Delta) cdot mathrm{type}(Delta)$ holds for a
Let $(A,mathfrak{m})$ be a hypersurface ring with dimension $d$, and $M$ a MCM $A-$module with reduction no.2 and $mu(M)=2$ or $3$ then we have proved that depth$G(M)geq d-mu(M)+1$. If $e(A)=3$ and $mu(M)=4$ then in this case we have proved that dept
Let $(A,mathfrak{m})$ be a Gorenstein local ring and let $CMS(A)$ be its stable category of maximal CM $A$-modules. Suppose $CMS(A) cong CMS(B)$ as triangulated categories. Then we show (1) If $A$ is a complete intersection of codimension $c$ then