ترغب بنشر مسار تعليمي؟ اضغط هنا

Vanishing of (co)homology over deformations of Cohen-Macaulay local rings of minimal multiplicity

84   0   0.0 ( 0 )
 نشر من قبل Dipankar Ghosh
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $ R $ be a $ d $-dimensional Cohen-Macaulay (CM) local ring of minimal multiplicity. Set $ S := R/({bf f}) $, where $ {bf f} := f_1,ldots,f_c $ is an $ R $-regular sequence. Suppose $ M $ and $ N $ are maximal CM $ S $-modules. It is shown that if $ mathrm{Ext}_S^i(M,N) = 0 $ for some $ (d+c+1) $ consecutive values of $ i geqslant 2 $, then $ mathrm{Ext}_S^i(M,N) = 0 $ for all $ i geqslant 1 $. Moreover, if this holds true, then either $ mathrm{projdim}_R(M) $ or $ mathrm{injdim}_R(N) $ is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.



قيم البحث

اقرأ أيضاً

In this paper we determine the possible Hilbert functions of a Cohen-Macaulay local ring of dimension $d$, multiplicity $e$ and first Hilbert coefficient $e_1$ in the case $e_1 = e + 2$.
In this paper we study Cohen-Macaulay local rings of dimension $d$, multiplicity $e$ and second Hilbert coefficient $e_2$ in the case $e_2 = e_1 - e + 1$. Let $h = mu(mathfrak{m}) - d$. If $e_2 eq 0$ then in our case we can prove that type $A geq e - h -1$. If type $A = e - h -1$ then we show that the associated graded ring $G(A)$ is Cohen-Macaulay. In the next case when type $A = e - h$ we determine all possible Hilbert series of $A$. In this case we show that the Hilbert Series of $A$ completely determines depth $G(A)$.
Let $(A,mathfrak{m})$ be a hypersurface ring with dimension $d$, and $M$ a MCM $A-$module with reduction no.2 and $mu(M)=2$ or $3$ then we have proved that depth$G(M)geq d-mu(M)+1$. If $e(A)=3$ and $mu(M)=4$ then in this case we have proved that dept h$G(M)geq d-3$. When $A = Q/(f)$ where $Q = k[[X_1,cdots, X_{d+1}]]$ then we give estimates for depth $G(M)$ in terms of minimal presentation of $M$. Our paper is the first systematic study of depth of associated graded modules of MCM modules over hypersurface rings.
Let $(A,mathfrak{m})$ be a Gorenstein local ring and let $CMS(A)$ be its stable category of maximal CM $A$-modules. Suppose $CMS(A) cong CMS(B)$ as triangulated categories. Then we show (1) If $A$ is a complete intersection of codimension $c$ then so is $B$. (2) If $A, B$ are Henselian and not hypersurfaces then $dim A = dim B$. (3) If $A, B$ are Henselian and $A$ is an isolated singularity then so is $B$. We also give some applications of our results.
The goal of the present paper is the study of some algebraic invariants of Stanley-Reisner rings of Cohen-Macaulay simplicial complexes of dimension $d - 1$. We prove that the inequality $d leq mathrm{reg}(Delta) cdot mathrm{type}(Delta)$ holds for a ny $(d-1)$-dimensional Cohen-Macaulay simplicial complex $Delta$ satisfying $Delta=mathrm{core}(Delta)$, where $mathrm{reg}(Delta)$ (resp. $mathrm{type}(Delta)$) denotes the Castelnuovo-Mumford regularity (resp. Cohen-Macaulay type) of the Stanley-Reisner ring $Bbbk[Delta]$. Moreover, for any given integers $d,r,t$ satisfying $r,t geq 2$ and $r leq d leq rt$, we construct a Cohen-Macaulay simplicial complex $Delta(G)$ as an independent complex of a graph $G$ such that $dim(Delta(G))=d-1$, $mathrm{reg}(Delta(G))=r$ and $mathrm{type}(Delta(G))=t$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا