ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaussian RAM: Lightweight Image Classification via Stochastic Retina-Inspired Glimpse and Reinforcement Learning

63   0   0.0 ( 0 )
 نشر من قبل Dongseok Shim
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies on image classification have mainly focused on the performance of the networks, not on real-time operation or model compression. We propose a Gaussian Deep Recurrent visual Attention Model (GDRAM)- a reinforcement learning based lightweight deep neural network for large scale image classification that outperforms the conventional CNN (Convolutional Neural Network) which uses the entire image as input. Highly inspired by the biological visual recognition process, our model mimics the stochastic location of the retina with Gaussian distribution. We evaluate the model on Large cluttered MNIST, Large CIFAR-10 and Large CIFAR-100 datasets which are resized to 128 in both width and height.



قيم البحث

اقرأ أيضاً

699 - Fanbo Sun , Zhixiang Gu , Bo Feng 2019
Yelp has been one of the most popular local service search engine in US since 2004. It is powered by crowd-sourced text reviews and photo reviews. Restaurant customers and business owners upload photo images to Yelp, including reviewing or advertisin g either food, drinks, or inside and outside decorations. It is obviously not so effective that labels for food photos rely on human editors, which is an issue should be addressed by innovative machine learning approaches. In this paper, we present a simple but effective approach which can identify up to ten kinds of food via raw photos from the challenge dataset. We use 1) image pre-processing techniques, including filtering and image augmentation, 2) feature extraction via convolutional neural networks (CNN), and 3) three ways of classification algorithms. Then, we illustrate the classification accuracy by tuning parameters for augmentations, CNN, and classification. Our experimental results show this simple but effective approach to identify up to 10 food types from images.
115 - Haichao Shi , Peng Li , Bo Wang 2018
Recently it has shown that the policy-gradient methods for reinforcement learning have been utilized to train deep end-to-end systems on natural language processing tasks. Whats more, with the complexity of understanding image content and diverse way s of describing image content in natural language, image captioning has been a challenging problem to deal with. To the best of our knowledge, most state-of-the-art methods follow a pattern of sequential model, such as recurrent neural networks (RNN). However, in this paper, we propose a novel architecture for image captioning with deep reinforcement learning to optimize image captioning tasks. We utilize two networks called policy network and value network to collaboratively generate the captions of images. The experiments are conducted on Microsoft COCO dataset, and the experimental results have verified the effectiveness of the proposed method.
Synthesizing realistic medical images provides a feasible solution to the shortage of training data in deep learning based medical image recognition systems. However, the quality control of synthetic images for data augmentation purposes is under-inv estigated, and some of the generated images are not realistic and may contain misleading features that distort data distribution when mixed with real images. Thus, the effectiveness of those synthetic images in medical image recognition systems cannot be guaranteed when they are being added randomly without quality assurance. In this work, we propose a reinforcement learning (RL) based synthetic sample selection method that learns to choose synthetic images containing reliable and informative features. A transformer based controller is trained via proximal policy optimization (PPO) using the validation classification accuracy as the reward. The selected images are mixed with the original training data for improved training of image recognition systems. To validate our method, we take the pathology image recognition as an example and conduct extensive experiments on two histopathology image datasets. In experiments on a cervical dataset and a lymph node dataset, the image classification performance is improved by 8.1% and 2.3%, respectively, when utilizing high-quality synthetic images selected by our RL framework. Our proposed synthetic sample selection method is general and has great potential to boost the performance of various medical image recognition systems given limited annotation.
110 - Naftali Cohen , Tucker Balch , 2019
The art of systematic financial trading evolved with an array of approaches, ranging from simple strategies to complex algorithms all relying, primary, on aspects of time-series analysis. Recently, after visiting the trading floor of a leading financ ial institution, we noticed that traders always execute their trade orders while observing images of financial time-series on their screens. In this work, we built upon the success in image recognition and examine the value in transforming the traditional time-series analysis to that of image classification. We create a large sample of financial time-series images encoded as candlestick (Box and Whisker) charts and label the samples following three algebraically-defined binary trade strategies. Using the images, we train over a dozen machine-learning classification models and find that the algorithms are very efficient in recovering the complicated, multiscale label-generating rules when the data is represented visually. We suggest that the transformation of continuous numeric time-series classification problem to a vision problem is useful for recovering signals typical of technical analysis.
When we deploy machine learning models in high-stakes medical settings, we must ensure these models make accurate predictions that are consistent with known medical science. Inherently interpretable networks address this need by explaining the ration ale behind each decision while maintaining equal or higher accuracy compared to black-box models. In this work, we present a novel interpretable neural network algorithm that uses case-based reasoning for mammography. Designed to aid a radiologist in their decisions, our network presents both a prediction of malignancy and an explanation of that prediction using known medical features. In order to yield helpful explanations, the network is designed to mimic the reasoning processes of a radiologist: our network first detects the clinically relevant semantic features of each image by comparing each new image with a learned set of prototypical image parts from the training images, then uses those clinical features to predict malignancy. Compared to other methods, our model detects clinical features (mass margins) with equal or higher accuracy, provides a more detailed explanation of its prediction, and is better able to differentiate the classification-relevant parts of the image.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا