ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic Sample Selection via Reinforcement Learning

162   0   0.0 ( 0 )
 نشر من قبل Yuan Xue
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Synthesizing realistic medical images provides a feasible solution to the shortage of training data in deep learning based medical image recognition systems. However, the quality control of synthetic images for data augmentation purposes is under-investigated, and some of the generated images are not realistic and may contain misleading features that distort data distribution when mixed with real images. Thus, the effectiveness of those synthetic images in medical image recognition systems cannot be guaranteed when they are being added randomly without quality assurance. In this work, we propose a reinforcement learning (RL) based synthetic sample selection method that learns to choose synthetic images containing reliable and informative features. A transformer based controller is trained via proximal policy optimization (PPO) using the validation classification accuracy as the reward. The selected images are mixed with the original training data for improved training of image recognition systems. To validate our method, we take the pathology image recognition as an example and conduct extensive experiments on two histopathology image datasets. In experiments on a cervical dataset and a lymph node dataset, the image classification performance is improved by 8.1% and 2.3%, respectively, when utilizing high-quality synthetic images selected by our RL framework. Our proposed synthetic sample selection method is general and has great potential to boost the performance of various medical image recognition systems given limited annotation.



قيم البحث

اقرأ أيضاً

This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation. When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware me thods can make batch RL more sample efficient. We first consider the off-policy policy evaluation problem. To evaluate a new target policy, we analyze a Lasso fitted Q-evaluation method and establish a finite-sample error bound that has no polynomial dependence on the ambient dimension. To reduce the Lasso bias, we further propose a post model-selection estimator that applies fitted Q-evaluation to the features selected via group Lasso. Under an additional signal strength assumption, we derive a sharper instance-dependent error bound that depends on a divergence function measuring the distribution mismatch between the data distribution and occupancy measure of the target policy. Further, we study the Lasso fitted Q-iteration for batch policy optimization and establish a finite-sample error bound depending on the ratio between the number of relevant features and restricted minimal eigenvalue of the datas covariance. In the end, we complement the results with minimax lower bounds for batch-data policy evaluation/optimization that nearly match our upper bounds. The results suggest that having well-conditioned data is crucial for sparse batch policy learning.
115 - Xiaoyang Wang , Bo Li , Yibo Zhang 2021
Several AutoML approaches have been proposed to automate the machine learning (ML) process, such as searching for the ML model architectures and hyper-parameters. However, these AutoML pipelines only focus on improving the learning accuracy of benign samples while ignoring the ML model robustness under adversarial attacks. As ML systems are increasingly being used in a variety of mission-critical applications, improving the robustness of ML systems has become of utmost importance. In this paper, we propose the first robust AutoML framework, Robusta--based on reinforcement learning (RL)--to perform feature selection, aiming to select features that lead to both accurate and robust ML systems. We show that a variation of the 0-1 robust loss can be directly optimized via an RL-based combinatorial search in the feature selection scenario. In addition, we employ heuristics to accelerate the search procedure based on feature scoring metrics, which are mutual information scores, tree-based classifiers feature importance scores, F scores, and Integrated Gradient (IG) scores, as well as their combinations. We conduct extensive experiments and show that the proposed framework is able to improve the model robustness by up to 22% while maintaining competitive accuracy on benign samples compared with other feature selection methods.
Reinforcement learning (RL) algorithms usually require a substantial amount of interaction data and perform well only for specific tasks in a fixed environment. In some scenarios such as healthcare, however, usually only few records are available for each patient, and patients may show different responses to the same treatment, impeding the application of current RL algorithms to learn optimal policies. To address the issues of mechanism heterogeneity and related data scarcity, we propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics, which are estimated by leveraging both commonalities and differences across subjects. The learned SCM enables us to counterfactually reason what would have happened had another treatment been taken. It helps avoid real (possibly risky) exploration and mitigates the issue that limited experiences lead to biased policies. We propose counterfactual RL algorithms to learn both population-level and individual-level policies. We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function. Experimental results on synthetic and real-world data demonstrate the efficacy of the proposed approach.
Recent improvements in synthetic data generation make it possible to produce images that are highly photorealistic and indistinguishable from real ones. Furthermore, synthetic generation pipelines have the potential to generate an unlimited number of images. The combination of high photorealism and scale turn the synthetic data into a promising candidate for potentially improving various machine learning (ML) pipelines. Thus far, a large body of research in this field has focused on using synthetic images for training, by augmenting and enlarging training data. In contrast to using synthetic data for training, in this work we explore whether synthetic data can be beneficial for model selection. Considering the task of image classification, we demonstrate that when data is scarce, synthetic data can be used to replace the held out validation set, thus allowing to train on a larger dataset.
Previous studies on image classification have mainly focused on the performance of the networks, not on real-time operation or model compression. We propose a Gaussian Deep Recurrent visual Attention Model (GDRAM)- a reinforcement learning based ligh tweight deep neural network for large scale image classification that outperforms the conventional CNN (Convolutional Neural Network) which uses the entire image as input. Highly inspired by the biological visual recognition process, our model mimics the stochastic location of the retina with Gaussian distribution. We evaluate the model on Large cluttered MNIST, Large CIFAR-10 and Large CIFAR-100 datasets which are resized to 128 in both width and height.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا