ﻻ يوجد ملخص باللغة العربية
We revisit empirical Bayes in the absence of a tractable likelihood function, as is typical in scientific domains relying on computer simulations. We investigate how the empirical Bayesian can make use of neural density estimators first to use all noise-corrupted observations to estimate a prior or source distribution over uncorrupted samples, and then to perform single-observation posterior inference using the fitted source distribution. We propose an approach based on the direct maximization of the log-marginal likelihood of the observations, examining both biased and de-biased estimators, and comparing to variational approaches. We find that, up to symmetries, a neural empirical Bayes approach recovers ground truth source distributions. With the learned source distribution in hand, we show the applicability to likelihood-free inference and examine the quality of the resulting posterior estimates. Finally, we demonstrate the applicability of Neural Empirical Bayes on an inverse problem from collider physics.
Many domains of science have developed complex simulations to describe phenomena of interest. While these simulations provide high-fidelity models, they are poorly suited for inference and lead to challenging inverse problems. We review the rapidly d
We develop an empirical Bayes (EB) algorithm for the matrix completion problems. The EB algorithm is motivated from the singular value shrinkage estimator for matrix means by Efron and Morris (1972). Since the EB algorithm is essentially the EM algor
Neural Network based controllers hold enormous potential to learn complex, high-dimensional functions. However, they are prone to overfitting and unwarranted extrapolations. PAC Bayes is a generalized framework which is more resistant to overfitting
Circular variables arise in a multitude of data-modelling contexts ranging from robotics to the social sciences, but they have been largely overlooked by the machine learning community. This paper partially redresses this imbalance by extending some
Empirical Bayes methods have been around for a long time and have a wide range of applications. These methods provide a way in which historical data can be aggregated to provide estimates of the posterior mean. This thesis revisits some of the empiri