ﻻ يوجد ملخص باللغة العربية
We predict Co-based chalcogenides with a diamond-like structure can host unconventional high temperature superconductivity (high-$T_c$). The essential electronic physics in these materials stems from the Co layers with each layer being formed by vertex-shared CoA$_4$ (A=S,Se,Te) tetrahedra complexes, a material genome proposed recently by us to host potential unconventional high-$T_c$ close to a $d^7$ filling configuration in 3d transition metal compounds. We calculate the magnetic ground states of different transition metal compounds with this structure. It is found that (Mn,Fe,Co)-based compounds all have a G-type antiferromagnetic(AFM) insulating ground state while Ni-based compounds are paramagnetic metal. The AFM interaction is the largest in the Co-based compounds as the three $t_{2g}$ orbitals all strongly participate in AFM superexchange interactions. The abrupt quenching of the magnetism from the Co to Ni-based compounds is very similar to those from Fe to Co-based pnictides in which a C-type AFM state appears in the Fe-based ones but vanishes in the Co-based ones. This behavior can be considered as an electronic signature of the high-$T_c$ gene. Upon doping, as we predicted before, this family of Co-based compounds favor a strong d-wave pairing superconducting state.
Topological insulators/semimetals and unconventional iron-based superconductors have attracted major attentions in condensed matter physics in the past 10 years. However, there is little overlap between these two fields, although the combination of t
Following the discovery of superconductivity in quasi-one-dimensional K$_2$Cr$_3$As$_3$ containing [(Cr$_3$As$_3$)$^{2-}$]$_{infty}$ chains [J. K. Bao et al., arXiv: 1412.0067 (2014)], we succeeded in synthesizing an analogous compound, Rb$_2$Cr$_3$A
We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnictides within a five-orbital model with on-site interactions. The leading contribution to the scattering rate is calculated from the second-order diagrams
We develop a phenomenological theory for the family of uranium-based heavy fermion superconductors ($URhGe$, $UCoGe$, and $UTe_2$ ). The theory unifies the understanding of both superconductivity(SC) with a weak magnetic field and reentrant supercond
Topological insulators and semimetals as well as unconventional iron-based superconductors have attracted major recent attention in condensed matter physics. Previously, however, little overlap has been identified between these two vibrant fields, ev