ﻻ يوجد ملخص باللغة العربية
We study a multi-user downlink scheduling problem for optimizing the freshness of information available to users roaming across multiple cells. We consider both adversarial and stochastic settings and design scheduling policies that optimize two distinct information freshness metrics, namely the average age-of-information and the peak age-of-information. We show that a natural greedy scheduling policy is competitive with the optimal offline policy in the adversarial setting. We also derive fundamental lower bounds to the competitive ratio achievable by any online policy. In the stochastic environment, we show that a Max-Weight scheduling policy that takes into account the channel statistics achieves an approximation factor of $2$ for minimizing the average age of information in two extreme mobility scenarios. We conclude the paper by establishing a large-deviation optimality result achieved by the greedy policy for minimizing the peak age of information for static users situated at a single cell.
We study the multi-user scheduling problem for minimizing the Age of Information (AoI) in cellular wireless networks under stationary and non-stationary regimes. We derive fundamental lower bounds for the scheduling problem and design efficient onlin
In this short paper, we consider the problem of designing a near-optimal competitive scheduling policy for $N$ mobile users, to maximize the freshness of available information uniformly across all users. Prompted by the unreliability and non-stationa
Age of Information (AoI) has become an important concept in communications, as it allows system designers to measure the freshness of the information available to remote monitoring or control processes. However, its definition tacitly assumed that ne
Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) de
We summarize recent contributions in the broad area of age of information (AoI). In particular, we describe the current state of the art in the design and optimization of low-latency cyberphysical systems and applications in which sources send time-s