ﻻ يوجد ملخص باللغة العربية
Age of Information (AoI) has become an important concept in communications, as it allows system designers to measure the freshness of the information available to remote monitoring or control processes. However, its definition tacitly assumed that new information is used at any time, which is not always the case and the instants at which information is collected and used are dependent on a certain query process. We propose a model that accounts for the discrete time nature of many monitoring processes, considering a pull-based communication model in which the freshness of information is only important when the receiver generates a query. We then define the Age of Information at Query (QAoI), a more general metric that fits the pull-based scenario, and show how its optimization can lead to very different choices from traditional push-based AoI optimization when using a Packet Erasure Channel (PEC).
It is becoming increasingly clear that an important task for wireless networks is to minimize the age of information (AoI), i.e., the timeliness of information delivery. While mainstream approaches generally rely on the real-time observation of user
Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) de
This paper considers a wireless network with a base station (BS) conducting timely status updates to multiple clients via adaptive non-orthogonal multiple access (NOMA)/orthogonal multiple access (OMA). Specifically, the BS is able to adaptively swit
This letter analyzes a class of information freshness metrics for large IoT systems in which terminals employ slotted ALOHA to access a common channel. Considering a Gilbert- Elliot channel model, information freshness is evaluated through a penalty
We consider an information updating system where a source produces updates as requested by a transmitter. The transmitter further processes these updates in order to generate $partial$ $updates$, which have smaller information compared to the origina