ترغب بنشر مسار تعليمي؟ اضغط هنا

Freshness on Demand: Optimizing Age of Information for the Query Process

214   0   0.0 ( 0 )
 نشر من قبل Anders E. Kal{\\o}r
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Age of Information (AoI) has become an important concept in communications, as it allows system designers to measure the freshness of the information available to remote monitoring or control processes. However, its definition tacitly assumed that new information is used at any time, which is not always the case and the instants at which information is collected and used are dependent on a certain query process. We propose a model that accounts for the discrete time nature of many monitoring processes, considering a pull-based communication model in which the freshness of information is only important when the receiver generates a query. We then define the Age of Information at Query (QAoI), a more general metric that fits the pull-based scenario, and show how its optimization can lead to very different choices from traditional push-based AoI optimization when using a Packet Erasure Channel (PEC).



قيم البحث

اقرأ أيضاً

96 - Bin Han , Yao Zhu , Zhiyuan Jiang 2020
It is becoming increasingly clear that an important task for wireless networks is to minimize the age of information (AoI), i.e., the timeliness of information delivery. While mainstream approaches generally rely on the real-time observation of user AoI and channel state, there has been little attention to solve the problem in a complete (or partial) absence of such knowledge. In this article, we present a novel study to address the optimal blind radio resource scheduling problem in orthogonal frequency division multiplexing access (OFDMA) systems towards minimizing long-term average AoI, which is proven to be the composition of time-domain-fair clustered round-robin and frequency-domain-fair intra-cluster sub-carrier assignment. Heuristic solutions that are near-optimal as shown by simulation results are also proposed to effectively improve the performance upon presence of various degrees of extra knowledge, e.g., channel state and AoI.
Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) de gradation. It is therefore important to study the performance limit of AoI as well as how to achieve such limit. In this paper, we aim to optimize the AoI in random access Poisson networks. By taking into account the spatio-temporal interactions amongst the transmitters, an expression of the peak AoI is derived, based on explicit expressions of the optimal peak AoI and the corresponding optimal system parameters including the packet arrival rate and the channel access probability are further derived. It is shown that with a given packet arrival rate (resp. a given channel access probability), the optimal channel access probability (resp. the optimal packet arrival rate), is equal to one under a small node deployment density, and decrease monotonically as the spatial deployment density increases due to the severe interference caused by spatio-temproal coupling between transmitters. When joint tuning of the packet arrival rate and channel access probability is performed, the optimal channel access probability is always set to be one. Moreover, with the sole tuning of the channel access probability, it is found that the optimal peak AoI performance can be improved with a smaller packet arrival rate only when the node deployment density is high, which is contrast to the case of the sole tuning of the packet arrival rate, where a higher channel access probability always leads to better optimal peak AoI regardless of the node deployment density. In all the cases of optimal tuning of system parameters, the optimal peak AoI linearly grows with the node deployment density as opposed to an exponential growth with fixed system parameters.
This paper considers a wireless network with a base station (BS) conducting timely status updates to multiple clients via adaptive non-orthogonal multiple access (NOMA)/orthogonal multiple access (OMA). Specifically, the BS is able to adaptively swit ch between NOMA and OMA for the downlink transmission to optimize the information freshness of the network, characterized by the Age of Information (AoI) metric. If the BS chooses OMA, it can only serve one client within each time slot and should decide which client to serve; if the BS chooses NOMA, it can serve more than one client at the same time and needs to decide the power allocated to the served clients. For the simple two-client case, we formulate a Markov Decision Process (MDP) problem and develop the optimal policy for the BS to decide whether to use NOMA or OMA for each downlink transmission based on the instantaneous AoI of both clients. The optimal policy is shown to have a switching-type property with obvious decision switching boundaries. A near-optimal policy with lower computation complexity is also devised. For the more general multi-client scenario, inspired by the proposed near-optimal policy, we formulate a nonlinear optimization problem to determine the optimal power allocated to each client by maximizing the expected AoI drop of the network in each time slot. We resolve the formulated problem by approximating it as a convex optimization problem. We also derive the upper bound of the gap between the approximate convex problem and the original nonlinear, nonconvex problem. Simulation results validate the effectiveness of the adopted approximation. The performance of the adaptive NOMA/OMA scheme by solving the convex optimization is shown to be close to that of max-weight policy solved by exhaustive search...
This letter analyzes a class of information freshness metrics for large IoT systems in which terminals employ slotted ALOHA to access a common channel. Considering a Gilbert- Elliot channel model, information freshness is evaluated through a penalty function that follows a power law of the time elapsed since the last received update, in contrast with the linear growth of age of information. By means of a signal flow graph analysis of Markov processes, we provide exact closed form expressions for the average penalty and for the peak penalty violation probability.
We consider an information updating system where a source produces updates as requested by a transmitter. The transmitter further processes these updates in order to generate $partial$ $updates$, which have smaller information compared to the origina l updates, to be sent to a receiver. We study the problem of generating partial updates, and finding their corresponding real-valued codeword lengths, in order to minimize the average age experienced by the receiver, while maintaining a desired level of mutual information between the original and partial updates. This problem is NP hard. We relax the problem and develop an alternating minimization based iterative algorithm that generates a pmf for the partial updates, and the corresponding age-optimal real-valued codeword length for each update. We observe that there is a tradeoff between the attained average age and the mutual information between the original and partial updates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا