ﻻ يوجد ملخص باللغة العربية
Although the energies associated with nuclear reactions are due primarily to interactions involving nuclear forces, the rates and probabilities associated with those reactions are effectively governed by electromagnetic forces. Charges in the local environment can modulate the Coulomb barrier, and thereby change the rates of nuclear processes. Experiments are presented in which low-temperature electrons are attached to high-density rotating neutrals to form negative ions. The steady-state quiescent rotating plasma generated here lends itself to first prove the principle that low temperature systems can yield MeV fusion particles. It allows the use of high density of neutrals interacting with the wall to yield gain greater than unity. It also demonstrates that instabilities can be avoided with high neutral densities. Collective dynamic interactions within this steady-state quiescent plasma result in an arrangement of negative charges that lowers the effective Coulomb barrier to nuclear reactions at a solid wall of reactants. MeV alpha particles are synchronously observed with externally imposed pulses as evidence of fusion being enabled by Coulomb fields. Impacts on fusion, the source of energy in the universe, will be discussed.
A nonlinear kinetic equation for nonrelativistic quantum plasma with electromagnetic interaction of particles is obtained in the Hartrees mean-field approximation. It is cast in a convenient form of Vlasov-Boltzmann-type equation with quantum interfe
QED cascades in a strong electromagnetic field of optical range and arbitrary configuration are considered. A general expression for short-time dependence of the key electron quantum dynamical parameter is derived, allowing to generalize the effectiv
In this paper, we consider the spectral dependences of transverse electromagnetic waves generated in solar plasma at coalescence of Langmuir waves. It is shown that different spectra of Langmuir waves lead to characteristic types of transversal elect
The dynamics of charged particles in electromagnetic fields is an essential component of understanding the most extreme environments in our Universe. In electromagnetic fields of sufficient magnitude, radiation emission dominates the particle motion
The Landau-Lifshitz equation provides an efficient way to account for the effects of radiation reaction without acquiring the non-physical solutions typical for the Lorentz-Abraham-Dirac equation. We solve the Landau-Lifshitz equation in its covarian