ﻻ يوجد ملخص باللغة العربية
The Landau-Lifshitz equation provides an efficient way to account for the effects of radiation reaction without acquiring the non-physical solutions typical for the Lorentz-Abraham-Dirac equation. We solve the Landau-Lifshitz equation in its covariant four-vector form in order to control both the energy and momentum of radiating particle. Our study reveals that implicit time-symmetric collocation methods of the Runge-Kutta-Nystrom type are superior in both accuracy and better maintaining the mass-shell condition than their explicit counterparts. We carry out an extensive study of numerical accuracy by comparing the analytical and numerical solutions of the Landau-Lifshitz equation. Finally, we present the results of simulation of particles scattering by a focused laser pulse. Due to radiation reaction, particles are less capable for penetration into the focal region, as compared to the case of radiation reaction neglected. Our results are important for designing the forthcoming experiments with high intensity laser fields.
The dynamics of charged particles in electromagnetic fields is an essential component of understanding the most extreme environments in our Universe. In electromagnetic fields of sufficient magnitude, radiation emission dominates the particle motion
We study electron acceleration in a plasma wakefield under the influence of the radiation-reaction force caused by the transverse betatron oscillations of the electron in the wakefield. Both the classical and the strong quantum-electrodynamic (QED) l
Two tests are described that were developed for benchmarking and comparison of numerical codes in the context of AWAKE experiment.
Laser-ion acceleration with ultra-short pulse, PW-class lasers is dominated by non-thermal, intra-pulse plasma dynamics. The presence of multiple ion species or multiple charge states in targets leads to characteristic modulations and even mono-energ
We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parame