ﻻ يوجد ملخص باللغة العربية
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems using a universal quantum computer. However, existing algorithms generally approximate the entire time evolution operators, which may need a deep quantum circuit that are beyond the capability of near-term noisy quantum devices. Here, focusing on the time evolution of a fixed input quantum state, we propose an adaptive approach to construct a low-depth time evolution circuit. By introducing a measurable quantifier that describes the simulation error, we use an adaptive strategy to learn the shallow quantum circuit that minimizes the simulation error. We numerically test the adaptive method with the electronic Hamiltonians of $mathrm{H_2O}$ and $mathrm{H_4}$ molecules, and the transverse field ising model with random coefficients. Compared to the first-order Suzuki-Trotter product formula, our method can significantly reduce the circuit depth (specifically the number of two-qubit gates) by around two orders while maintaining the simulation accuracy. We show applications of the method in simulating many-body dynamics and solving energy spectra with the quantum Krylov algorithm. Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
We treat the problem of normally ordering expressions involving the standard boson operators a, a* where [a,a*]=1. We show that a simple product formula for formal power series - essentially an extension of the Taylor expansion - leads to a double ex
We present a quantum algorithm for the dynamical simulation of time-dependent Hamiltonians. Our method involves expanding the interaction-picture Hamiltonian as a sum of generalized permutations, which leads to an integral-free Dyson series of the ti
Adaptive resolution schemes allow the simulation of a molecular fluid treating simultaneously different subregions of the system at different levels of resolution. In this work we present a new scheme formulated in terms of a global Hamiltonian. With
Product formula approximations of the time-evolution operator on quantum computers are of great interest due to their simplicity, and good scaling with system size by exploiting commutativity between Hamiltonian terms. However, product formulas exhib
Quantum computing can efficiently simulate Hamiltonian dynamics of many-body quantum physics, a task that is generally intractable with classical computers. The hardness lies at the ubiquitous anti-commutative relations of quantum operators, in corre