ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting anticommutation in Hamiltonian simulation

66   0   0.0 ( 0 )
 نشر من قبل Qi Zhao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum computing can efficiently simulate Hamiltonian dynamics of many-body quantum physics, a task that is generally intractable with classical computers. The hardness lies at the ubiquitous anti-commutative relations of quantum operators, in corresponding with the notorious negative sign problem in classical simulation. Intuitively, Hamiltonians with more commutative terms are also easier to simulate on a quantum computer, and anti-commutative relations generally cause more errors, such as in the product formula method. Here, we theoretically explore the role of anti-commutative relation in Hamiltonian simulation. We find that, contrary to our intuition, anti-commutative relations could also reduce the hardness of Hamiltonian simulation. Specifically, Hamiltonians with mutually anti-commutative terms are easy to simulate, as what happens with ones consisting of mutually commutative terms. Such a property is further utilized to reduce the algorithmic error or the gate complexity in the truncated Taylor series quantum algorithm for general problems. Moreover, we propose two modified linear combinations of unitaries methods tailored for Hamiltonians with different degrees of anti-commutation. We numerically verify that the proposed methods exploiting anti-commutative relations could significantly improve the simulation accuracy of electronic Hamiltonians. Our work sheds light on the roles of commutative and anti-commutative relations in simulating quantum systems.



قيم البحث

اقرأ أيضاً

Product formula approximations of the time-evolution operator on quantum computers are of great interest due to their simplicity, and good scaling with system size by exploiting commutativity between Hamiltonian terms. However, product formulas exhib it poor scaling with the time $t$ and error $epsilon$ of simulation as the gate cost of a single step scales exponentially with the order $m$ of accuracy. We introduce well-conditioned multiproduct formulas, which are a linear combination of product formulas, where a single step has polynomial cost $mathcal{O}(m^2log{(m)})$ and succeeds with probability $Omega(1/operatorname{log}^2{(m)})$. Our multiproduct formulas imply a simple and generic simulation algorithm that simultaneously exploits commutativity in arbitrary systems and has a worst-case cost $mathcal{O}(tlog^{2}{(t/epsilon)})$ which is optimal up to poly-logarithmic factors. In contrast, prior Trotter and post-Trotter Hamiltonian simulation algorithms realize only one of these two desirable features. A key technical result of independent interest is our solution to a conditioning problem in previous multiproduct formulas that amplified numerical errors by $e^{Omega(m)}$ in the classical setting, and led to a vanishing success probability $e^{-Omega(m)}$ in the quantum setting.
Hamiltonian simulation is one of the most important problems in quantum computation, and quantum singular value transformation (QSVT) is an efficient way to simulate a general class of Hamiltonians. However, the QSVT circuit typically involves multip le ancilla qubits and multi-qubit control gates. We propose a drastically simplified quantum circuit called the minimal QSVT circuit, which uses only one ancilla qubit to simulate a class of $n$-qubit random Hamiltonians. We formulate a simple metric called the quantum unitary evolution score (QUES), which is a scalable quantum benchmark and can be verified without any need for classical computation. We demonstrate that QUES is directly related to the circuit fidelity, and the classical hardness of an associated quantum circuit sampling problem. Theoretical analysis suggests under suitable assumptions, there exists an optimal simulation time $t^{text{opt}}approx 4.81$, at which even a noisy quantum device may be sufficient to demonstrate the classical hardness.
Achieving an accurate description of fermionic systems typically requires considerably many more orbitals than fermions. Previous resource analyses of quantum chemistry simulation often failed to exploit this low fermionic number information in the i mplementation of Trotter-based approaches and overestimated the quantum-computer runtime as a result. They also depended on numerical procedures that are computationally too expensive to scale up to large systems of practical interest. Here we propose techniques that solve both problems by using various factorized decompositions of the electronic structure Hamiltonian. We showcase our techniques for the uniform electron gas, finding substantial (over 100x) improvements in Trotter error for low-filling fraction and pushing to much higher numbers of orbitals than is possible with existing methods. Finally, we calculate the T-count to perform phase-estimation on Jellium. In the low-filling regime, we observe improvements in gate complexity of over 10x compared to the best Trotter-based approach reported to date. We also report gate counts competitive with qubitization-based approaches for Wigner-Seitz values of physical interest.
We provide a quantum method for simulating Hamiltonian evolution with complexity polynomial in the logarithm of the inverse error. This is an exponential improvement over existing methods for Hamiltonian simulation. In addition, its scaling with resp ect to time is close to linear, and its scaling with respect to the time derivative of the Hamiltonian is logarithmic. These scalings improve upon most existing methods. Our method is to use a compressed Lie-Trotter formula, based on recent ideas for efficient discrete-time simulations of continuous-time quantum query algorithms.
We study how parallelism can speed up quantum simulation. A parallel quantum algorithm is proposed for simulating the dynamics of a large class of Hamiltonians with good sparse structures, called uniform-structured Hamiltonians, including various Ham iltonians of practical interest like local Hamiltonians and Pauli sums. Given the oracle access to the target sparse Hamiltonian, in both query and gate complexity, the running time of our parallel quantum simulation algorithm measured by the quantum circuit depth has a doubly (poly-)logarithmic dependence $operatorname{polylog}log(1/epsilon)$ on the simulation precision $epsilon$. This presents an exponential improvement over the dependence $operatorname{polylog}(1/epsilon)$ of previous optimal sparse Hamiltonian simulation algorithm without parallelism. To obtain this result, we introduce a novel notion of parallel quantum walk, based on Childs quantum walk. The target evolution unitary is approximated by a truncated Taylor series, which is obtained by combining these quantum walks in a parallel way. A lower bound $Omega(log log (1/epsilon))$ is established, showing that the $epsilon$-dependence of the gate depth achieved in this work cannot be significantly improved. Our algorithm is applied to simulating three physical models: the Heisenberg model, the Sachdev-Ye-Kitaev model and a quantum chemistry model in second quantization. By explicitly calculating the gate complexity for implementing the oracles, we show that on all these models, the total gate depth of our algorithm has a $operatorname{polylog}log(1/epsilon)$ dependence in the parallel setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا