ترغب بنشر مسار تعليمي؟ اضغط هنا

CMB Constraints on Brane Inflation

113   0   0.0 ( 0 )
 نشر من قبل Francisco A. Brito
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the primordial phase of the Universe in the context of brane inflation modeled by Bogomolnyi-Prasad-Sommerfield (BPS) domain walls solutions of a bosonic sector of a 5D supergravity inspired theory. The solutions are embedded into five dimensions and it is assumed that they interact with each other due to elastic particle collisions in the bulk. A four-dimensional arctan-type inflaton potential drives the accelerated expansion phase and predicts observational quantities in good agreement with the currently available Cosmic Microwave Background data.



قيم البحث

اقرأ أيضاً

224 - Benjamin Shlaer 2012
We illustrate a framework for constructing models of chaotic inflation where the inflaton is the position of a D3 brane along the universal cover of a string compactification. In our scenario, a brane rolls many times around a non-trivial one-cycle, thereby unwinding a Ramond-Ramond flux. These flux monodromies are similar in spirit to the monodromies of Silverstein, Westphal, and McAllister, and their four-dimensional description is that of Kaloper and Sorbo. Assuming moduli stabilization is rigid enough, the large-field inflationary potential is protected from radiative corrections by a discrete shift symmetry.
Hilltop inflation models are often described by potentials $V = V_{0}(1-{phi^{n}over m^{n}}+...)$. The omitted terms indicated by ellipsis do not affect inflation for $m lesssim 1$, but the most popular models with $n =2$ and $4$ for $m lesssim 1$ ar e ruled out observationally. Meanwhile in the large $m$ limit the results of the calculations of the tensor to scalar ratio $r$ in the models with $V = V_{0}(1-{phi^{n}over m^{n}})$, for all $n$, converge to $r= 4/N lesssim 0.07$, as in chaotic inflation with $V sim phi$, suggesting a reasonably good fit to the Planck data. We show, however, that this is an artifact related to the inconsistency of the model $V = V_{0}(1-{phi^{n}over m^{n}})$ at $phi > m$. Consistent generalizations of this model in the large $m$ limit typically lead to a much greater value $r= 8/N$, which negatively affects the observational status of hilltop inflation. Similar results are valid for D-brane inflation with $V = V_{0}(1-{m^{n}over phi^{n}})$, but consistent generalizations of D-brane inflation models may successfully complement $alpha$-attractors in describing most of the area in the ($n_{s}$, $r$) space favored by Planck 2018.
We discuss supergravity inflation in braneworld cosmology for the class of potentials $V(phi)=alpha phi^nrm{exp}(-beta^m phi^m)$ with $m=1,~2$. These minimal SUGRA models evade the $eta$ problem due to a broken shift symmetry and can easily accommoda te the observational constraints. Models with smaller $n$ are preferred while models with larger $n$ are out of the $2sigma$ region. Remarkably, the field excursions required for $60$ $e$-foldings stay sub-planckian $Deltaphi <1$.
If local supersymmetry is the correct extension of the standard model of particle physics, then following Inflation the early universe would have been populated by gravitinos produced from scatterings in the hot plasma during reheating. Their abundan ce is directly related to the magnitude of the reheating temperature. The gravitino lifetime is fixed as a function of its mass, and for gravitinos with lifetimes longer than the age of the universe at redshift $zsimeq 2times 10^{6}$ (or roughly $6times 10^6{rm s}$), decay products can produce spectral distortion of the cosmic microwave background. Currently available COBE/FIRAS limits on spectral distortion can, in certain cases, already be competitive with respect to cosmological constraints from primordial nucleosynthesis for some gravitino decay scenarios. We show how the sensitivity limits on $mu$ and $y$ distortions that can be reached with current technology would improve constraints and possibly rule out a significant portion of the parameter space for gravitino masses and Inflation reheating temperatures.
I elaborate on a link between the string--scale breaking of supersymmetry that occurs in a class of superstring models and the onset of inflation. The link rests on spatially flat cosmologies supported by a scalar field driven by an exponential poten tial. If, as in String Theory, this potential is steep enough, under some assumptions that are spelled out in the text the scalar can only climb up as it emerges from an initial singularity. In the presence of another mild exponential, slow--roll inflation is thus injected during the ensuing descent and definite imprints are left in the CMB power spectrum: the quadrupole is systematically reduced and, depending on the choice of two parameters, an oscillatory behavior can also emerge for low multipoles l < 50, in qualitative agreement with WMAP9 and PLANCK data. The experimentally favored value of the spectral index, n_s ~ 0.96, points to a potentially important role for the NS fivebrane, which is unstable in this class of models, in the Early Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا