ترغب بنشر مسار تعليمي؟ اضغط هنا

Supergravity inflation on a brane

130   0   0.0 ( 0 )
 نشر من قبل Lina Wu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss supergravity inflation in braneworld cosmology for the class of potentials $V(phi)=alpha phi^nrm{exp}(-beta^m phi^m)$ with $m=1,~2$. These minimal SUGRA models evade the $eta$ problem due to a broken shift symmetry and can easily accommodate the observational constraints. Models with smaller $n$ are preferred while models with larger $n$ are out of the $2sigma$ region. Remarkably, the field excursions required for $60$ $e$-foldings stay sub-planckian $Deltaphi <1$.



قيم البحث

اقرأ أيضاً

84 - Shuntaro Aoki , Hyun Min Lee , 2021
We propose a new construction of the supergravity inflation as an UV completion of the Higgs-$R^2$ inflation. In the dual description of $R^2$-supergravity, we show that there appear dual chiral superfields containing the scalaron or sigma field in t he Starobinsky inflation, which unitarizes the supersymmetric Higgs inflation with a large non-minimal coupling up to the Planck scale. We find that a successful slow-roll inflation is achievable in the Higgs-sigma field space, but under the condition that higher curvature terms are introduced to cure the tachyonic mass problems for spectator singlet scalar fields. We also discuss supersymmetry breaking and its transmission to the visible sector as a result of the couplings of the dual chiral superfields and the non-minimal gravity coupling of the Higgs fields.
I elaborate on a link between the string--scale breaking of supersymmetry that occurs in a class of superstring models and the onset of inflation. The link rests on spatially flat cosmologies supported by a scalar field driven by an exponential poten tial. If, as in String Theory, this potential is steep enough, under some assumptions that are spelled out in the text the scalar can only climb up as it emerges from an initial singularity. In the presence of another mild exponential, slow--roll inflation is thus injected during the ensuing descent and definite imprints are left in the CMB power spectrum: the quadrupole is systematically reduced and, depending on the choice of two parameters, an oscillatory behavior can also emerge for low multipoles l < 50, in qualitative agreement with WMAP9 and PLANCK data. The experimentally favored value of the spectral index, n_s ~ 0.96, points to a potentially important role for the NS fivebrane, which is unstable in this class of models, in the Early Universe.
We study the embedding of the quadratic model of chaotic inflation into the 4D, N=1 minimal theories of supergravity by the use of massive vector multiplets and investigate its robustness against higher order corrections. In particular, we investigat e the criterion of technical naturalness for the inflaton potential. In the framework of the new-minimal formulation the massive vector multiplet is built in terms of a real linear multiplet coupled to a vector multiplet via the 4D analog of the Green-Schwarz term. This theory gives rise to a single-field quadratic model of chaotic inflation, which is protected by an shift symmetry which naturally suppresses the higher order corrections. The embedding in the old-minimal formulation is again achieved in terms of a massive vector multiplet and also gives rise to single-field inflation. Nevertheless in this case there is no obvious symmetry to protect the model from higher order corrections.
We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cos mic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.
We perform a general algebraic analysis on the possibility of realising slow-roll inflation in the moduli sector of string models. This problem turns out to be very closely related to the characterisation of models admitting metastable vacua with non -negative cosmological constant. In fact, we show that the condition for the existence of viable inflationary trajectories is a deformation of the condition for the existence of metastable de Sitter vacua. This condition depends on the ratio between the scale of inflation and the gravitino mass and becomes stronger as this parameter grows. After performing a general study within arbitrary supergravity models, we analyse the implications of our results in several examples. More concretely, in the case of heterotic and orientifold string compactifications on a Calabi-Yau in the large volume limit we show that there may exist fully viable models, allowing both for inflation and stabilisation. Additionally, we show that subleading corrections breaking the no-scale property shared by these models always allow for slow-roll inflation but with an inflationary scale suppressed with respect to the gravitino scale. A scale of inflation larger than the gravitino scale can also be achieved under more restrictive circumstances and only for certain types of compactifications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا