ﻻ يوجد ملخص باللغة العربية
The proper orthogonal decomposition (POD) is a powerful classical tool in fluid mechanics used, for instance, for model reduction and extraction of coherent flow features. However, its applicability to high-resolution data, as produced by three-dimensional direct numerical simulations, is limited owing to its computational complexity. Here, we propose a wavelet-based adaptive version of the POD (the wPOD), in order to overcome this limitation. The amount of data to be analyzed is reduced by compressing them using biorthogonal wavelets, yielding a sparse representation while conveniently providing control of the compression error. Numerical analysis shows how the distinct error contributions of wavelet compression and POD truncation can be balanced under certain assumptions, allowing us to efficiently process high-resolution data from three-dimensional simulations of flow problems. Using a synthetic academic test case, we compare our algorithm with the randomized singular value decomposition. Furthermore, we demonstrate the ability of our method analyzing data of a 2D wake flow and a 3D flow generated by a flapping insect computed with direct numerical simulation.
An extension of Proper Orthogonal Decomposition is applied to the wall layer of a turbulent channel flow (Re {tau} = 590), so that empirical eigenfunctions are defined in both space and time. Due to the statistical symmetries of the flow, the igenfun
In the present study, we propose a new surrogate model, called common kernel-smoothed proper orthogonal decomposition (CKSPOD), to efficiently emulate the spatiotemporal evolution of fluid flow dynamics. The proposed surrogate model integrates and ex
The present study deals with the finite element discretization of nanofluid convective transport in an enclosure with variable properties. We study the Buongiorno model, which couples the Navier-Stokes equations for the base fluid, an advective-diffu
We present a detailed review of large-scale structure (LSS) study using the discrete wavelet transform (DWT). After describing how one constructs a wavelet decomposition we show how this bases can be used as a complete statistical discription of LSS.
Tensor decomposition is a well-known tool for multiway data analysis. This work proposes using stochastic gradients for efficient generalized canonical polyadic (GCP) tensor decomposition of large-scale tensors. GCP tensor decomposition is a recently