ﻻ يوجد ملخص باللغة العربية
We iteratively apply a recently formulated adiabatic theorem for the strong-coupling limit in finite-dimensional quantum systems. This allows us to improve approximations to a perturbed dynamics, beyond the standard approximation based on quantum Zeno dynamics and adiabatic elimination. The effective generators describing the approximate evolutions are endowed with the same block structure as the unperturbed part of the generator, and exhibit adiabatic evolutions. This iterative adiabatic theorem reveals that adiabaticity holds eternally, that is, the system evolves within each eigenspace of the unperturbed part of the generator, with an error bounded by $O(1/gamma)$ uniformly in time, where $gamma$ characterizes the strength of the unperturbed part of the generator. We prove that the iterative adiabatic theorem reproduces Blochs perturbation theory in the unitary case, and is therefore a full generalization to open systems. We furthermore prove the equivalence of the Schrieffer-Wolff and des Cloiseaux approaches in the unitary case and generalize both to arbitrary open systems, showing that they share the eternal adiabaticity, and providing explicit error bounds. Finally we discuss the physical structure of the effective adiabatic generators and show that ideal effective generators for open systems do not exist in general.
A combination of the digitized shortcut-to-adiabaticity (STA) and the sequential digitized adiabaticity is implemented in a superconducting quantum device to determine electronic states in two example systems, the H2 molecule and the topological Bern
Adiabaticity of quantum evolution is important in many settings. One example is the adiabatic quantum computation. Nevertheless, up to now, there is no effective method to test the adiabaticity of the evolution when the eigenenergies of the driven Ha
Different techniques to speed up quantum adiabatic processes are currently being explored for applications in atomic, molecular and optical physics, such as transport, cooling and expansions, wavepacket splitting, or internal state control. Here we e
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the energy cost of the shortcut by the energy consumption of the system enlarged by including the control device. A mechani
Spin echo can be used to refocus random dynamical phases caused by inhomogeneities in control fields and thereby retain the purity of a spatial distribution of quantum spins. This technique for accurate spin control is an essential ingredient in many