ﻻ يوجد ملخص باللغة العربية
Semi-supervised video object segmentation (semi-VOS) is widely used in many applications. This task is tracking class-agnostic objects from a given target mask. For doing this, various approaches have been developed based on online-learning, memory networks, and optical flow. These methods show high accuracy but are hard to be utilized in real-world applications due to slow inference time and tremendous complexity. To resolve this problem, template matching methods are devised for fast processing speed but sacrificing lots of performance in previous models. We introduce a novel semi-VOS model based on a template matching method and a temporal consistency loss to reduce the performance gap from heavy models while expediting inference time a lot. Our template matching method consists of short-term and long-term matching. The short-term matching enhances target object localization, while long-term matching improves fine details and handles object shape-changing through the newly proposed adaptive template attention module. However, the long-term matching causes error-propagation due to the inflow of the past estimated results when updating the template. To mitigate this problem, we also propose a temporal consistency loss for better temporal coherence between neighboring frames by adopting the concept of a transition matrix. Our model obtains 79.5% J&F score at the speed of 73.8 FPS on the DAVIS16 benchmark. The code is available in https://github.com/HYOJINPARK/TTVOS.
Significant progress has been made in Video Object Segmentation (VOS), the video object tracking task in its finest level. While the VOS task can be naturally decoupled into image semantic segmentation and video object tracking, significantly much mo
Video data is with complex temporal dynamics due to various factors such as camera motion, speed variation, and different activities. To effectively capture this diverse motion pattern, this paper presents a new temporal adaptive module ({bf TAM}) to
In this paper, the main task we aim to tackle is the multi-instance semi-supervised video object segmentation across a sequence of frames where only the first-frame box-level ground-truth is provided. Detection-based algorithms are widely adopted to
We introduce ReConvNet, a recurrent convolutional architecture for semi-supervised video object segmentation that is able to fast adapt its features to focus on any specific object of interest at inference time. Generalization to new objects never ob
We developed a real-time, high-quality semi-supervised video object segmentation algorithm. Its accuracy is on par with the most accurate, time-consuming online-learning model, while its speed is similar to the fastest template-matching method with s