ﻻ يوجد ملخص باللغة العربية
Significant progress has been made in Video Object Segmentation (VOS), the video object tracking task in its finest level. While the VOS task can be naturally decoupled into image semantic segmentation and video object tracking, significantly much more research effort has been made in segmentation than tracking. In this paper, we introduce tracking-by-detection into VOS which can coherently integrate segmentation into tracking, by proposing a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance. Notably, our method is entirely online and thus suitable for one-shot learning, and our end-to-end trainable model allows multiple object segmentation in one forward pass. We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
In this paper, the main task we aim to tackle is the multi-instance semi-supervised video object segmentation across a sequence of frames where only the first-frame box-level ground-truth is provided. Detection-based algorithms are widely adopted to
Video object segmentation, aiming to segment the foreground objects given the annotation of the first frame, has been attracting increasing attentions. Many state-of-the-art approaches have achieved great performance by relying on online model updati
Semi-supervised video object segmentation (semi-VOS) is widely used in many applications. This task is tracking class-agnostic objects from a given target mask. For doing this, various approaches have been developed based on online-learning, memory n
In this paper, we propose the differentiable mask-matching network (DMM-Net) for solving the video object segmentation problem where the initial object masks are provided. Relying on the Mask R-CNN backbone, we extract mask proposals per frame and fo
Video captioning aims to automatically generate natural language descriptions of video content, which has drawn a lot of attention recent years. Generating accurate and fine-grained captions needs to not only understand the global content of video, b