ﻻ يوجد ملخص باللغة العربية
Despite the superb performance of State-Of-The-Art (SOTA) DNNs, the increasing computational cost makes them very challenging to meet real-time latency and accuracy requirements. Although DNN runtime latency is dictated by model property (e.g., architecture, operations), hardware property (e.g., utilization, throughput), and more importantly, the effective mapping between these two, many existing approaches focus only on optimizing model property such as FLOPS reduction and overlook the mismatch between DNN model and hardware properties. In this work, we show that the mismatch between the varied DNN computation workloads and GPU capacity can cause the idle GPU tail effect, leading to GPU under-utilization and low throughput. As a result, the FLOPs reduction cannot bring effective latency reduction, which causes sub-optimal accuracy versus latency trade-offs. Motivated by this, we propose a GPU runtime-aware DNN optimization methodology to eliminate such GPU tail effect adaptively on GPU platforms. Our methodology can be applied on top of existing SOTA DNN optimization approaches to achieve better latency and accuracy trade-offs. Experiments show 11%-27% latency reduction and 2.5%-4.0% accuracy improvement over several SOTA DNN pruning and NAS methods, respectively
Graphics Processing Units (GPUs) employ large register files to accommodate all active threads and accelerate context switching. Unfortunately, register files are a scalability bottleneck for future GPUs due to long access latency, high power consump
We propose ZnG, a new GPU-SSD integrated architecture, which can maximize the memory capacity in a GPU and address performance penalties imposed by an SSD. Specifically, ZnG replaces all GPU internal DRAMs with an ultra-low-latency SSD to maximize th
Image bitmaps have been widely used in in-memory applications, which consume lots of storage space and energy. Compared with legacy DRAM, non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features in capacity and power s
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks. However, their hefty computational and memory demands make them challenging to deploy to resource-cons
Advanced tensor decomposition, such as Tensor train (TT) and Tensor ring (TR), has been widely studied for deep neural network (DNN) model compression, especially for recurrent neural networks (RNNs). However, compressing convolutional neural network