ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Similarity-aware Compression to Reduce Bit-writes in Non-Volatile Main Memory for Image-based Applications

75   0   0.0 ( 0 )
 نشر من قبل Zhangyu Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image bitmaps have been widely used in in-memory applications, which consume lots of storage space and energy. Compared with legacy DRAM, non-volatile memories (NVMs) are suitable for bitmap storage due to the salient features in capacity and power savings. However, NVMs suffer from higher latency and energy consumption in writes compared with reads. Although compressing data in write accesses to NVMs on-the-fly reduces the bit-writes in NVMs, existing precise or approximate compression schemes show limited performance improvements for data of bitmaps, due to the irregular data patterns and variance in data. We observe that the data containing bitmaps show the pixel-level similarity due to the analogous contents in adjacent pixels. By exploiting the pixel-level similarity, we propose SimCom, an efficient similarity-aware compression scheme in hardware layer, to compress data for each write access on-the-fly. The idea behind SimCom is to compress continuous similar words into the pairs of base words with runs. With the aid of domain knowledge of images, SimCom adaptively selects an appropriate compression mode to achieve an efficient trade-off between image quality and memory performance. We implement SimCom on GEM5 with NVMain and evaluate the performance with real-world workloads. Our results demonstrate that SimCom reduces 33.0%, 34.8% write latency and saves 28.3%, 29.0% energy than state-of-the-art FPC and BDI with minor quality loss of 3%.



قيم البحث

اقرأ أيضاً

Modern computing systems are embracing non-volatile memory (NVM) to implement high-capacity and low-cost main memory. Elevated operating voltages of NVM accelerate the aging of CMOS transistors in the peripheral circuitry of each memory bank. Aggress ive device scaling increases power density and temperature, which further accelerates aging, challenging the reliable operation of NVM-based main memory. We propose HEBE, an architectural technique to mitigate the circuit aging-related problems of NVM-based main memory. HEBE is built on three contributions. First, we propose a new analytical model that can dynamically track the aging in the peripheral circuitry of each memory bank based on the banks utilization. Second, we develop an intelligent memory request scheduler that exploits this aging model at run time to de-stress the peripheral circuitry of a memory bank only when its aging exceeds a critical threshold. Third, we introduce an isolation transistor to decouple parts of a peripheral circuit operating at different voltages, allowing the decoupled logic blocks to undergo long-latency de-stress operations independently and off the critical path of memory read and write accesses, improving performance. We evaluate HEBE with workloads from the SPEC CPU2017 Benchmark suite. Our results show that HEBE significantly improves both performance and lifetime of NVM-based main memory.
Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory consumption of GAN-based SR (usually generators) causes performance degradation and more energy consumption, hindering the deployment of GAN-based SR into resource-constricted mobile devices. In this paper, we propose a novel compression framework textbf{M}ulti-scale textbf{F}eature textbf{A}ggregation Net based textbf{GAN} (MFAGAN) for reducing the memory access cost of the generator. First, to overcome the memory explosion of dense connections, we utilize a memory-efficient multi-scale feature aggregation net as the generator. Second, for faster and more stable training, our method introduces the PatchGAN discriminator. Third, to balance the student discriminator and the compressed generator, we distill both the generator and the discriminator. Finally, we perform a hardware-aware neural architecture search (NAS) to find a specialized SubGenerator for the target mobile phone. Benefiting from these improvements, the proposed MFAGAN achieves up to textbf{8.3}$times$ memory saving and textbf{42.9}$times$ computation reduction, with only minor visual quality degradation, compared with ESRGAN. Empirical studies also show $sim$textbf{70} milliseconds latency on Qualcomm Snapdragon 865 chipset.
While reduction in feature size makes computation cheaper in terms of latency, area, and power consumption, performance of emerging data-intensive applications is determined by data movement. These trends have introduced the concept of scalability as reaching a desirable performance per unit cost by using as few number of units as possible. Many proposals have moved compute closer to the memory. However, these efforts ignored maintaining a balance between bandwidth and compute rate of an architecture, with those of applications, which is a key principle in designing scalable large systems. This paper proposes the use of memory slices, a modular building block for scalable memory systems integrated with compute, in which performance scales with memory size (and volume of data). The slice architecture utilizes a programmable memory interface feeding a systolic compute engine with high reuse rate. The modularity feature of slice-based systems is exploited with a partitioning and data mapping strategy across allocated memory slices where training performance scales with the data size. These features enable shifting the most pressure to cheap compute units rather than expensive memory accesses or transfers via interconnection network. An application of the memory slices to a scale-out memory system is accelerating the training of recurrent, convolutional, and hybrid neural networks (RNNs and RNNs+CNN) that are forming cloud workloads. The results of our cycle-level simulations show that memory slices exhibits a superlinear speedup when the number of slices increases. Furthermore, memory slices improve power efficiency to 747 GFLOPs/J for training LSTMs. While our current evaluation uses memory slices with 3D packaging, a major value is that slices can also be constructed with a variety of packaging options, for example with DDR-based memory units.
Frequent-pattern mining is a common approach to reveal the valuable hidden trends behind data. However, existing frequent-pattern mining algorithms are designed for DRAM, instead of persistent memories (PMs), which can lead to severe performance and energy overhead due to the utterly different characteristics between DRAM and PMs when they are running on PMs. In this paper, we propose an efficient and Wear-leveling-aware Frequent-Pattern Mining scheme, WFPM, to solve this problem. The proposed WFPM is evaluated by a series of experiments based on realistic datasets from diversified application scenarios, where WFPM achieves 32.0% performance improvement and prolongs the NVM lifetime of header table by 7.4x over the EvFP-Tree.
This paper summarizes the idea of ChargeCache, which was published in HPCA 2016 [51], and examines the works significance and future potential. DRAM latency continues to be a critical bottleneck for system performance. In this work, we develop a low- cost mechanism, called ChargeCache, that enables faster access to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed row has more charge and thus the following access to the same row can be performed faster. To exploit this observation, we propose to track the addresses of recently-accessed rows in a table in the memory controller. If a later DRAM request hits in that table, the memory controller uses lower timing parameters, leading to reduced DRAM latency. Row addresses are removed from the table after a specified duration to ensure rows that have leaked too much charge are not accessed with lower latency. We evaluate ChargeCache on a wide variety of workloads and show that it provides significant performance and energy benefits for both single-core and multi-core systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا