ترغب بنشر مسار تعليمي؟ اضغط هنا

Poincare profiles of Lie groups and a coarse geometric dichotomy

117   0   0.0 ( 0 )
 نشر من قبل David Hume
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Poincare profiles are a family of analytically defined coarse invariants, which can be used as obstructions to the existence of coarse embeddings between metric spaces. In this paper we calculate the Poincare profiles of all connected unimodular Lie groups, Baumslag-Solitar groups and Thurston geometries, demonstrating two substantially different types of behaviour. In the case of Lie groups, we obtain a dichotomy which extends both the dichotomy separating rank one and higher rank semisimple Lie groups and the dichotomy separating connected solvable unimodular Lie groups of polynomial and exponential growth. We provide equivalent algebraic, quasi-isometric and coarse geometric formulations of this dichotomy. Our results have many consequences for coarse embeddings, for instance we deduce that for groups of the form $Ntimes S$, where $N$ is a connected nilpotent Lie group, and $S$ is a simple Lie group of real rank 1, both the growth exponent of $N$, and the Ahlfors-regular conformal dimension of $S$ are non-decreasing under coarse embeddings. These results are new even in the quasi-isometric setting and give obstructions to quasi-isometric embeddings which in many cases are stronger than those previously obtained by Buyalo-Schroeder.



قيم البحث

اقرأ أيضاً

We introduce a spectrum of monotone coarse invariants for metric measure spaces called Poincar{e} profiles. The two extremes of this spectrum determine the growth of the space, and the separation profile as defined by Benjamini--Schramm--Tim{a}r. In this paper we focus on properties of the Poincar{e} profiles of groups with polynomial growth, and of hyperbolic spaces, where we deduce a connection between these profiles and conformal dimension. As applications, we use these invariants to show the non-existence of coarse embeddings in a variety of examples.
78 - Gabriel Pallier 2021
We characterize the Lie groups with finitely many connected components that are $O(u)$-bilipschitz equivalent (almost quasiisometric in the sense that the sublinear function $u$ replaces the additive bounds of quasiisometry) to the real hyperbolic sp ace, or to the complex hyperbolic plane. The characterizations are expressed in terms of deformations of Lie algebras and in terms of pinching of sectional curvature of left-invariant Riemannian metrics in the real case. We also compare sublinear bilipschitz equivalence and coarse equivalence, and prove that every coarse equivalence between the logarithmic coarse structures of geodesic spaces is a $O(log)$-bilipschitz equivalence. The Lie groups characterized are exactly those whose logarithmic coarse structure is equivalent to that of a real hyperbolic space or the complex hyperbolic plane.
We introduce an obstruction to the existence of a coarse embedding of a given group or space into a hyperbolic group, or more generally into a hyperbolic graph of bounded degree. The condition we consider is admitting exponentially many fat bigons, a nd it is preserved by a coarse embedding between graphs with bounded degree. Groups with exponential growth and linear divergence (such as direct products of two groups one of which has exponential growth, solvable groups that are not virtually nilpotent, and uniform higher-rank lattices) have this property and hyperbolic graphs do not, so the former cannot be coarsely embedded into the latter. Other examples include certain lacunary hyperbolic and certain small cancellation groups.
We show that, in compact semisimple Lie groups and Lie algebras, any neighbourhood of the identity gets mapped, under the commutator map, to a neighbourhood of the identity.
Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having cut-points in their asymptotic cones. By Olshanskii-Osin-Sapir, that property is weaker than the property of having Morse (rank 1) quasi-geodesics. Using our characterization of Morse quasi-geodesics, we give a new proof of the theorem of Farb-Kaimanovich-Masur that states that mapping class groups cannot contain copies of irreducible lattices in semi-simple Lie groups of higher ranks. It also gives a generalization of the result of Birman-Lubotzky-McCarthy about solvable subgroups of mapping class groups not covered by the Tits alternative of Ivanov and McCarthy. We show that any group acting acylindrically on a simplicial tree or a locally compact hyperbolic graph always has many periodic Morse quasi-geodesics (i.e. Morse elements), so its divergence functions are never linear. We also show that the same result holds in many cases when the hyperbolic graph satisfies Bowditchs properties that are weaker than local compactness. This gives a new proof of Behrstocks result that every pseudo-Anosov element in a mapping class group is Morse. On the other hand, we conjecture that lattices in semi-simple Lie groups of higher rank always have linear divergence. We prove it in the case when the $mathbb{Q}$-rank is 1 and when the lattice is $SL_n(mathcal{O}_S)$ where $nge 3$, $S$ is a finite set of valuations of a number field $K$ including all infinite valuations, and $mathcal{O}_S$ is the corresponding ring of $S$-integers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا