ﻻ يوجد ملخص باللغة العربية
We observe monopole oscillations in a mixture of Bose-Einstein condensates, where the usually dominant mean-field interactions are canceled. In this case, the system is governed by the next-order Lee-Huang-Yang (LHY) correction to the ground state energy, which describes the effect of quantum fluctuations. Experimentally such a LHY fluid is realized by controlling the atom numbers and interaction strengths in a $^{39}$K spin mixture confined in a spherical trap potential. We measure the monopole oscillation frequency as a function of the LHY interaction strength as proposed recently by J{o}rgensen et al. [Phys. Rev. Lett. 121, 173403 (2018)] and find excellent agreement with simulations of the complete experiment including the excitation procedure and inelastic losses. This confirms that the system and its collective behavior are initially dominated by LHY interactions. Moreover, the monopole oscillation frequency is found to be stable against variations of the involved scattering lengths in a broad region around the ideal values, confirming the stabilizing effect of the LHY interaction. These results pave the way for using the non-linearity provided by the LHY term in quantum simulation experiments and for investigations beyond the LHY regime.
We consider a homogeneous heteronuclear Bose mixture with contact interactions at the mean-field collapse, i.e. with interspecies attraction equal to the mean geometrical intraspecies repulsion. We show that the Lee-Huang-Yang (LHY) energy functional
We consider a dilute and ultracold bosonic gas of weakly-interacting atoms. Within the framework of quantum field theory we derive a zero-temperature modified Gross-Pitaevskii equation with beyond-mean-field corrections due to quantum depletion and a
Quantum collapse in three and two dimensions (3D and 2D) is induced by attractive potential ~ -1/r^2. It was demonstrated that the mean-field (MF) cubic self-repulsion in the 3D bosonic gas suppresses the collapse and creates the missing ground state
The beyond-mean-field Lee-Huang-Yang (LHY) correction is ubiquitous in dilute ultracold quantum gases. However, its effects are often elusive due to the typically much larger influence of the mean-field energy. In this work, we study an ultracold mix
Lee-Huang-Yang (LHY) fluids are an exotic quantum matter emerged in a Bose-Bose mixture where the mean-field interactions, interspecies attraction $(g_{12})$ and intraspecies repulsive $(g_{11}, g_{22})$, are tuned to cancel completely when $g_{12}=-