ﻻ يوجد ملخص باللغة العربية
We consider a homogeneous heteronuclear Bose mixture with contact interactions at the mean-field collapse, i.e. with interspecies attraction equal to the mean geometrical intraspecies repulsion. We show that the Lee-Huang-Yang (LHY) energy functional is accurately approximated by an expression that has the same functional form as in the homonuclear case. The approximated energy functional is characterized by two exponents, which can be treated as fitting parameters. We demonstrate that the values of these parameters which preserve the invariance under permutation of the two atomic species are exactly those of the homonuclear case. Deviations from the exact expression of LHY energy functional are discussed quantitatively and a specific application is described.
We observe monopole oscillations in a mixture of Bose-Einstein condensates, where the usually dominant mean-field interactions are canceled. In this case, the system is governed by the next-order Lee-Huang-Yang (LHY) correction to the ground state en
We consider a dilute and ultracold bosonic gas of weakly-interacting atoms. Within the framework of quantum field theory we derive a zero-temperature modified Gross-Pitaevskii equation with beyond-mean-field corrections due to quantum depletion and a
Quantum collapse in three and two dimensions (3D and 2D) is induced by attractive potential ~ -1/r^2. It was demonstrated that the mean-field (MF) cubic self-repulsion in the 3D bosonic gas suppresses the collapse and creates the missing ground state
The beyond-mean-field Lee-Huang-Yang (LHY) correction is ubiquitous in dilute ultracold quantum gases. However, its effects are often elusive due to the typically much larger influence of the mean-field energy. In this work, we study an ultracold mix
Lee-Huang-Yang (LHY) fluids are an exotic quantum matter emerged in a Bose-Bose mixture where the mean-field interactions, interspecies attraction $(g_{12})$ and intraspecies repulsive $(g_{11}, g_{22})$, are tuned to cancel completely when $g_{12}=-