ﻻ يوجد ملخص باللغة العربية
The use of millimeter-wave (mmWave) bands in 5G networks introduce a new set of challenges to network planning. Vulnerability to blockages and high path loss at mmWave frequencies require careful planning of the network to achieve the desired service quality. In this paper, we propose a novel 3D geometry-based framework for deploying mmWave base stations (gNBs) in urban environments by considering first-order reflection effects. We also provide a solution for the optimum deployment of passive metallic reflectors (PMRs) to extend radio coverage to non-line-of-sight (NLoS) areas. In particular, we perform visibility analysis to find the direct and indirect visibility regions, and using these, we derive a geometry-and-blockage-aided path loss model. We then formulate the network planning problem as two independent optimization problems, placement of gNB(s) and PMRs, to maximize the coverage area with a certain quality-of-service constraint and minimum cost. We test the efficacy of our proposed approach using a generic map and compare our simulation results with the ray-tracing solution. Our simulation results show that considering the first-order reflections in planning the mmWave network helps reduce the number of PMRs required to cover the NLoS area and the gNB placement aided with PMRs requires fewer gNBs to cover the same area, which in turn reduces the deployment cost.
Base station (BS) placement in mobile networks is critical to the efficient use of resources in any communication system and one of the main factors that determines the quality of communication. Although there is ample literature on the optimum place
Autonomous unmanned aerial vehicles (UAVs) with on-board base station equipment can potentially provide connectivity in areas where the terrestrial infrastructure is overloaded, damaged, or absent. Use cases comprise emergency response, wildfire supp
Multiple-input multiple-output (MIMO) techniques can help in scaling the achievable air-to-ground (A2G) channel capacity while communicating with drones. However, spatial multiplexing with drones suffers from rank deficient channels due to the unobst
Mobile base stations on board unmanned aerial vehicles (UAVs) promise to deliver connectivity to those areas where the terrestrial infrastructure is overloaded, damaged, or absent. A fundamental problem in this context involves determining a minimal
The use of millimeter wave (mmWave) spectrum for commercial wireless communications is expected to offer data rates in the order of Gigabits-per-second, thus able to support future applications such as Vehicle-to-Vehicle or Vehicle-to-Infrastructure