ﻻ يوجد ملخص باللغة العربية
The use of millimeter wave (mmWave) spectrum for commercial wireless communications is expected to offer data rates in the order of Gigabits-per-second, thus able to support future applications such as Vehicle-to-Vehicle or Vehicle-to-Infrastructure communication. However, especially in urban settings, mmWave signal propagation is sensitive to blockage by surrounding objects, resulting in significant signal attenuation. One approach to mitigate the effect of attenuation is through multi-hop communication with the help of relays. Leveraging the unique characteristics of the mmWave medium, we consider a single-source/destination $2$-hop system, where a cluster of spatially distributed and reconfigurable relays is used to cooperatively amplify-and-forward the source signal to the destination. Our system evolves in time slots, during which not only are optimal beamforming weights centrally determined, but also future relay positions for the subsequent time slot are optimally selected, jointly maximizing the expected signal-to-interference+noise ratio at the destination. Optimal predictive relay positioning is achieved by formulating a 2-stage stochastic programming problem, which is efficiently approximated via a conditional sample-average-approximation surrogate, and solved in a purely distributed fashion across relays. The efficacy of the proposed near-optimal positioning policy is corroborated by comparison against a randomized relay positioning policy, clearly confirming its superiority.
While millimeter wave (mmWave) communications promise high data rates, their sensitivity to blockage and severe signal attenuation presents challenges in their deployment in urban settings. To overcome these effects, we consider a distributed coopera
The concept of reconfigurable intelligent surface (RIS) has been proposed to change the propagation of electromagnetic waves, e.g., reflection, diffraction, and refraction. To accomplish this goal, the phase values of the discrete RIS units need to b
Switch-based hybrid network is a promising implementation for beamforming in large-scale millimetre wave (mmWave) antenna arrays. By fully exploiting the sparse nature of the mmWave channel, such hybrid beamforming reduces complexity and power consum
We consider stochastic motion planning in single-source single-destination robotic relay networks, under a cooperative beamforming framework. Assuming that the communication medium constitutes a spatiotemporal stochastic field, we propose a 2-stage s
We design a lightweight beam-searching algorithm for mobile millimeter-wave systems. We construct and maintain a set of path skeletons, i.e., potential paths between a user and the serving base station to substantially expedite the beam-searching pro