ﻻ يوجد ملخص باللغة العربية
We study the $P_{cs}(4459)^0$ recently observed by LHCb using the method of QCD sum rules. Our results support its interpretation as the $bar D^* Xi_c$ hadronic molecular state of either $J^P=1/2^-$ or $3/2^-$. Within the hadronic molecular picture, the three LHCb experiments observing $P_c$ and $P_{cs}$ states cite{lhcb,Aaij:2015tga,Aaij:2019vzc} can be well understood as a whole. This strongly supports the existence of hadronic molecules, whose studies can significantly improve our understanding on the construction of the subatomic world. To verify this picture, we propose to further investigate the $P_{cs}(4459)^0$ to examine whether it can be separated into two states, and to search for the $bar D Xi_c$ molecular state of $J^P=1/2^-$.
Motivated by the recent discovery of the first hidden charm pentaquark state with strangeness $P_{cs}(4459)$ by the LHCb Collaboration, we study the likely existence of a three-body $Sigma_{c}bar{D}bar{K}$ bound state, which shares the same minimal q
Evidences for new baryon states with mass >1.8 GeV were obtained in the experiments of the SPHINX Collaboration in studying hyperon-kaon mass spectra in several proton diffractive reactions. The main result of these experiments is the observation of
We study the electroproduction of the LHCb pentaquark states with the assumption that they are resonant states. The main concern here is to investigate the final state distribution in the phase space in order to extract the feeble pentaquark signal f
The mass spectrum of hidden charm pentaquark states composed of two diquarks and an antiquark are calculated by use of an effective Hamiltonian which includes explicitly the spin, color, and flavor dependent interactions. The results show that the $P
In the hadrocharmonium picture a $bar cc$ state and a light hadron form a bound state. The effective interaction is described in terms of the chromoelectric polarizability of the $bar cc$ state and energy-momentum-tensor densities of the light hadron