ترغب بنشر مسار تعليمي؟ اضغط هنا

Identify the hidden charm pentaquark signal from non-resonant background in electron-proton scattering

70   0   0.0 ( 0 )
 نشر من قبل Zhi Yang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the electroproduction of the LHCb pentaquark states with the assumption that they are resonant states. The main concern here is to investigate the final state distribution in the phase space in order to extract the feeble pentaquark signal from the large non-resonant background. Our results show that the ratio of the signal to background would increase significantly with proper kinematic cut, which would be very helpful for future experimental analysis.



قيم البحث

اقرأ أيضاً

We study the $P_{cs}(4459)^0$ recently observed by LHCb using the method of QCD sum rules. Our results support its interpretation as the $bar D^* Xi_c$ hadronic molecular state of either $J^P=1/2^-$ or $3/2^-$. Within the hadronic molecular picture, the three LHCb experiments observing $P_c$ and $P_{cs}$ states cite{lhcb,Aaij:2015tga,Aaij:2019vzc} can be well understood as a whole. This strongly supports the existence of hadronic molecules, whose studies can significantly improve our understanding on the construction of the subatomic world. To verify this picture, we propose to further investigate the $P_{cs}(4459)^0$ to examine whether it can be separated into two states, and to search for the $bar D Xi_c$ molecular state of $J^P=1/2^-$.
The lightest hidden-bottom tetraquarks in the dynamical diquark model fill an $S$-wave multiplet consisting of 12 isomultiplets. We predict their masses and dominant bottomonium decay channels using a simple 3-parameter Hamiltonian that captures the core fine-structure features of the model, including isospin dependence. The only experimental inputs needed are the corresponding observables for $Z_b(10610)$ and $Z_b(10650)$. The mass of $X_b$, the bottom analogue to $X(3872)$, is highly constrained in this scheme. In addition, using lattice-calculated potentials we predict the location of the center of mass of the $P$-wave multiplet and find that $Y(10860)$ fits well but the newly discovered $Y(10750)$ does not, more plausibly being a $D$-wave bottomonium state. Using similar methods, we also examine the lowest $S$-wave multiplet of 6 $cbar c sbar s$ states, assuming as in earlier work that $X(3915)$ and $Y(4140)$ are members, and predict the masses and dominant charmonium decay modes of the other states. We again use lattice potentials to compute the centers of mass of higher multiplets, and find them to be compatible with the masses of $Y(4626)$ ($1P$) and $X(4700)$ ($2S$), respectively.
The mass spectrum of hidden charm pentaquark states composed of two diquarks and an antiquark are calculated by use of an effective Hamiltonian which includes explicitly the spin, color, and flavor dependent interactions. The results show that the $P _c(4312)^+$ and $P_c(4440)^+$ states could be explained as hidden charm pentaquark states with isospin and spin-parity $IJ^P=1/2left(3/2^-right)$, the $P_c(4457)^+$ state could be explained as a hidden charm pentaquark state with $IJ^P=1/2left(5/2^-right)$, and the $P_{cs}(4459)^+$ state could be explained as a hidden charm pentaquark state with $IJ^P=0left(1/2^-right)$ or $0left(3/2^-right)$. Predications for the masses of other possible pentaquark states are also given, and the possible decay channels of these hidden charm pentaquark states are discussed.
Recently the TOTEM experiment at the LHC has released measurements at $sqrt{s} = 13$ TeV of the proton-proton total cross section, $sigma_{tot}$, and the ratio of the real to imaginary parts of the forward elastic amplitude, $rho$. Since then an inte nse debate on the $C$-parity asymptotic nature of the scattering amplitude was initiated. We examine the proton-proton and the antiproton-proton forward data above 10 GeV in the context of an eikonal QCD-based model, where nonperturbative effects are readily included via a QCD effective charge. We show that, despite an overall satisfactory description of the forward data is obtained by a model in which the scattering amplitude is dominated by only crossing-even elastic terms, there is evidence that the introduction of a crossing-odd term may improve the agreement with the measurements of $rho$ at $sqrt{s} = 13$ TeV. In the Regge language the dominant even(odd)-under-crossing object is the so called Pomeron (Odderon).
We present a new strategy using artificial intelligence (AI) to build the first AI-based Monte Carlo event generator (MCEG) capable of faithfully generating final state particle phase space in lepton-hadron scattering. We show a blueprint for integra ting machine learning strategies with calibrated detector simulations to build a vertex-level, AI-based MCEG, free of theoretical assumptions about femtometer scale physics. As the first steps towards this goal, we present a case study for inclusive electron-proton scattering using synthetic data from the PYTHIA MCEG for testing and validation purposes. Our quantitative results validate our proof of concept and demonstrate the predictive power of the trained models. The work suggests new venues for data preservation to enable future QCD studies of hadrons structure, and the developed technology can boost the science output of physics programs at facilities such as Jefferson Lab and the future Electron-Ion Collider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا