ترغب بنشر مسار تعليمي؟ اضغط هنا

Tight Capacity Bounds for Indoor Visible Light Communications With Signal-Dependent Noise

80   0   0.0 ( 0 )
 نشر من قبل Jin-Yuan Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Channel capacity bounds are derived for a point-to-point indoor visible light communications (VLC) system with signal-dependent Gaussian noise. Considering both illumination and communication, the non-negative input of VLC is constrained by peak and average optical intensity constraints. Two scenarios are taken into account: one scenario has both average and peak optical intensity constraints, and the other scenario has only average optical intensity constraint. For both two scenarios, we derive closed-from expressions of capacity lower and upper bounds. Specifically, the capacity lower bound is derived by using the variational method and the property that the output entropy is invariably larger than the input entropy. The capacity upper bound is obtained by utilizing the dual expression of capacity and the principle of capacity-achieving source distributions that escape to infinity. Moreover, the asymptotic analysis shows that the asymptotic performance gap between the capacity lower and upper bounds approaches zero. Finally, all derived capacity bounds are confirmed using numerical results.



قيم البحث

اقرأ أيضاً

Visible Light Communication (VLC) technology using light emitting diodes (LEDs) has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multip lexing (OFDM) has been applied to indoor wireless optical communications in order to mitigate the effect of multipath distortion of the optical channel as well as increasing data rate. In this paper, we investigate the indoor positioning accuracy of optical based OFDM techniques used in VLC systems. A positioning algorithm based on power attenuation is used to estimate the receiver coordinates. We further calculate the positioning errors in all the locations of a room and compare them with those of single carrier modulation scheme, i.e., on-off keying (OOK) modulation. We demonstrate that OFDM positioning system outperforms its conventional counterpart.
This paper presents an approach for visible light communication-based indoor positioning using compressed sensing. We consider a large number of light emitting diodes (LEDs) simultaneously transmitting their positional information and a user device e quipped with a photo-diode. By casting the LED signal separation problem into an equivalent compressed sensing framework, the user device is able to detect the set of nearby LEDs using sparse signal recovery algorithms. From this set, and using proximity method, position estimation is proposed based on the concept that if signal separation is possible, then overlapping light beam regions lead to decrease in positioning error due to increase in the number of reference points. The proposed method is evaluated in a LED-illuminated large-scale indoor open-plan office space scenario. The positioning accuracy is compared against the positioning error lower bound of the proximity method, for various system parameters.
Multiple-input multiple-output (MIMO) techniques have recently demonstrated significant potentials in visible light communications (VLC), as they can overcome the modulation bandwidth limitation and provide substantial improvement in terms of spectra l efficiency and link reliability. However, MIMO systems typically suffer from inter-channel interference, which causes severe degradation to the system performance. In this context, we propose a novel optical adaptive precoding (OAP) scheme for the downlink of MIMO VLC systems, which exploits the knowledge of transmitted symbols to enhance the effective signal-to-interference-plus-noise ratio. We also derive bit-error-rate expressions for the OAP under perfect and outdated channel state information (CSI). Our results demonstrate that the proposed scheme is more robust to both CSI error and channel correlation, compared to conventional channel inversion precoding.
343 - Jin-Yuan Wang , Hong Ge , Min Lin 2019
In this paper, we investigate the physical-layer security for a spatial modulation (SM) based indoor visible light communication (VLC) system, which includes multiple transmitters, a legitimate receiver, and a passive eavesdropper (Eve). At the trans mitters, the SM scheme is employed, i.e., only one transmitter is active at each time instant. To choose the active transmitter, a uniform selection (US) scheme is utilized. Two scenarios are considered: one is with non-negativity and average optical intensity constraints, the other is with non-negativity, average optical intensity and peak optical intensity constraints. Then, lower and upper bounds on the secrecy rate are derived for these two scenarios. Besides, the asymptotic behaviors for the derived secrecy rate bounds at high signal-to-noise ratio (SNR) are analyzed. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme and a greedy selection (GS) scheme are proposed to select the active transmitter. Numerical results show that the lower and upper bounds of the secrecy rate are tight. At high SNR, small asymptotic performance gaps exist between the derived lower and upper bounds. Moreover, the proposed GS scheme has the best performance, followed by the CAS scheme and the US scheme.
In this paper, we propose a faster-than-Nyquist (FTN) non-orthogonal frequency-division multiplexing (NOFDM) scheme for visible light communications (VLC) where the multiplexing/demultiplexing employs the inverse fractional cosine transform (IFrCT)/F rCT. Different to the common fractional Fourier transform-based NOFDM (FrFT-NOFDM) signal, FrCT-based NOFDM (FrCT-NOFDM) signal is real-valued which can be directly applied to the VLC systems without the expensive upconversion. Thus, FrCT-NOFDM is more suitable for the cost-sensitive VLC systems. Meanwhile, under the same transmission rate, FrCT-NOFDM signal occupies smaller bandwidth compared to OFDM signal. When the bandwidth compression factor $alpha$ is set to $0.8$, $20%$ bandwidth saving can be obtained. Therefore, FrCT-NOFDM has higher spectral efficiency and suffers less high-frequency distortion compared to OFDM, which benefits the bandwidth-limited VLC systems. As the simulation results show, bit error rate (BER) performance of FrCT-NOFDM with $alpha$ of $0.9$ or $0.8$ is better than that of OFDM. Moreover, FrCT-NOFDM has a superior security performance. In conclusion, FrCT-NOFDM shows great potential for application in the future VLC systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا