ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the physical-layer security for a spatial modulation (SM) based indoor visible light communication (VLC) system, which includes multiple transmitters, a legitimate receiver, and a passive eavesdropper (Eve). At the transmitters, the SM scheme is employed, i.e., only one transmitter is active at each time instant. To choose the active transmitter, a uniform selection (US) scheme is utilized. Two scenarios are considered: one is with non-negativity and average optical intensity constraints, the other is with non-negativity, average optical intensity and peak optical intensity constraints. Then, lower and upper bounds on the secrecy rate are derived for these two scenarios. Besides, the asymptotic behaviors for the derived secrecy rate bounds at high signal-to-noise ratio (SNR) are analyzed. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme and a greedy selection (GS) scheme are proposed to select the active transmitter. Numerical results show that the lower and upper bounds of the secrecy rate are tight. At high SNR, small asymptotic performance gaps exist between the derived lower and upper bounds. Moreover, the proposed GS scheme has the best performance, followed by the CAS scheme and the US scheme.
Recently, the spatial modulation (SM) technique has been proposed for visible light communication (VLC). This paper investigates the average symbol error rate (SER) for the VLC using adaptive spatial modulation (ASM). In the system, the analysis of t
This paper presents an approach for visible light communication-based indoor positioning using compressed sensing. We consider a large number of light emitting diodes (LEDs) simultaneously transmitting their positional information and a user device e
Visible Light Communication (VLC) technology using light emitting diodes (LEDs) has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multip
The light emitting diode (LED) nonlinearities distortion induced degradation in the performance of visible light communication (VLC) systems can be controlled by optimizing the DC bias point of the LED. In this paper, we theoretically analyze and exp
Intelligent reflecting surface (IRS) is of low-cost and energy-efficiency and will be a promising technology for the future wireless communications like sixth generation. To address the problem of conventional directional modulation (DM) that Alice o