ﻻ يوجد ملخص باللغة العربية
The Time-Of-Propagation detector is a Cherenkov particle identification detector based on quartz radiator bars for the Belle II experiment at the SuperKEKB electron-positron collider. The purpose of the detector is to identify the type of charged hadrons produced in electron-positron collisions, and requires a single photon timing resolution below 100 picoseconds. A novel front-end electronic system was designed, built, and integrated to acquire data from the 8192 microchannel plate photomultiplier tube channels in the detector. Waveform sampling of these analog signals is done by switched-capacitor array application-specific integrated circuits. The processes of triggering, digitization of windows of interest, readout, and data transfer to the Belle II data acquisition system are managed by Xilinx Zynq-7000 programmable system on a chip devices.
We present an FPGA-based online data reduction system for the pixel detector of the future Belle II experiment. The occupancy of the pixel detector is estimated at 3 %. This corresponds to a data output rate of more than 20 GB/s after zero suppressio
We describe a novel high-speed front-end electronic board (FEB) for interfacing an array of 32 Silicon Photo-multipliers (SiPM) with a computer. The FEB provides individually adjustable bias on the SiPMs, and performs low-noise analog signal amplific
The Time-Of-Propagation (TOP) counter is a novel device for particle identification for the barrel region of the Belle II experiment, where, information of Cherenkov light propagation time is used to reconstruct its ring image. We successfully finish
The Belle II experiment at the SuperKEKB collider at KEK, Tsukuba, Japan has successfully started taking data with the full detector in March 2019. Belle II is a luminosity frontier experiment of the new generation to search for physics beyond the St
The water Cherenkov detector array (WCDA) is one of the key detectors in the large high altitude air shower observatory (LHAASO), which is proposed for very high gamma ray source survey. In WCDA, there are more than 3000 photomultiplier tubes (PMTs)