ﻻ يوجد ملخص باللغة العربية
Geometrical frustration, quantum entanglement and disorder may prevent long-range order of localized spins with strong exchange interactions, resulting in a novel state of matter. $kappa$-(BEDT-TTF)$_2$-Cu$_2$(CN)$_3$ is considered the best approximation of this elusive quantum-spin-liquid state, but its ground-state properties remain puzzling. Here we present a multi-frequency electron-spin resonance study down to millikelvin temperatures, revealing a rapid drop of the spin susceptibility at $T^*=6,mathrm{K}$. This opening of a spin gap, accompanied by structural modifications, suggests the enigmatic `$6,mathrm{K}$-anomaly as the transition to a valence-bond-solid ground state. We identify an impurity contribution that becomes dominant when the intrinsic spins form singlets. Only probing the electrons directly manifests the pivotal role of defects for the low-energy properties of quantum-spin systems without magnetic order.
We have in detail characterized the anisotropic charge response of the dimer Mott insulator $kappa$-(BEDT-TTF)$_2$-Cu$_2$(CN)$_3$ by dc conductivity, Hall effect and dielectric spectroscopy. At room temperature the Hall coefficient is positive and cl
The electrodynamic response of the organic spin-liquid candidate $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ has been measured in an extremely wide energy range ($10^{-13}$ to 2 eV) as a function of temperature (5 to 300 K). Below the Mott gap, excitations
The electronic properties of molecular conductors can be readily varied via physical or chemical pressure as it increases the bandwidth W; this enables crossing the Mott insulator-to-metal phase transition by reducing electronic correlations U/W. Her
Low temperature scanning tunneling spectroscopy reveals the local density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, that was cut in-situ in ultra-high vacuum perpendicular to the superconducting BEDT-TTF layers. T
The recently proposed multiferroic state of the charge-transfer salt {kappa}-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl [P. Lunkenheimer et al., Nature Mater., vol. 11, pp. 755-758, Sept. 2012] has been studied by dc-conductivity, magnetic susceptibility and meas