ﻻ يوجد ملخص باللغة العربية
We introduce the use of deep learning ensembles for real-time, gravitational wave detection of spinning binary black hole mergers. This analysis consists of training independent neural networks that simultaneously process strain data from multiple detectors. The output of these networks is then combined and processed to identify significant noise triggers. We have applied this methodology in O2 and O3 data finding that deep learning ensembles clearly identify binary black hole mergers in open source data available at the Gravitational-Wave Open Science Center. We have also benchmarked the performance of this new methodology by processing 200 hours of open source, advanced LIGO noise from August 2017. Our findings indicate that our approach identifies real gravitational wave sources in advanced LIGO data with a false positive rate of 1 misclassification for every 2.7 days of searched data. A follow up of these misclassifications identified them as glitches. Our deep learning ensemble represents the first class of neural network classifiers that are trained with millions of modeled waveforms that describe quasi-circular, spinning, non-precessing, binary black hole mergers. Once fully trained, our deep learning ensemble processes advanced LIGO strain data faster than real-time using 4 NVIDIA V100 GPUs.
We apply machine learning methods to build a time-domain model for gravitational waveforms from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by representing the waveforms amplitude and phase using a principal c
We present a systematic comparison of the binary black hole (BBH) signal waveform reconstructed by two independent and complementary approaches used in LIGO and Virgo source inference: a template-based analysis, and a morphology-independent analysis.
Accurate extractions of the detected gravitational wave (GW) signal waveforms are essential to validate a detection and to probe the astrophysics behind the sources producing the GWs. This however could be difficult in realistic scenarios where the s
The spin distribution of binary black hole mergers contains key information concerning the formation channels of these objects, and the astrophysical environments where they form, evolve and coalesce. To quantify the suitability of deep learning to c
Gravitational radiation is properly defined only at future null infinity ($scri$), but in practice it is estimated from data calculated at a finite radius. We have used characteristic extraction to calculate gravitational radiation at $scri$ for the