ﻻ يوجد ملخص باللغة العربية
Gravitational radiation is properly defined only at future null infinity ($scri$), but in practice it is estimated from data calculated at a finite radius. We have used characteristic extraction to calculate gravitational radiation at $scri$ for the inspiral and merger of two equal mass non-spinning black holes. Thus we have determined the first unambiguous merger waveforms for this problem. The implementation is general purpose, and can be applied to calculate the gravitational radiation, at $scri$, given data at a finite radius calculated in another computation.
We apply machine learning methods to build a time-domain model for gravitational waveforms from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by representing the waveforms amplitude and phase using a principal c
Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce
The standard post-Newtonian approximation to gravitational waveforms, called T-approximants, from non-spinning black hole binaries are known not to be sufficiently accurate close to the last stable orbit of the system. A new approximation, called P-a
We present a systematic comparison of the binary black hole (BBH) signal waveform reconstructed by two independent and complementary approaches used in LIGO and Virgo source inference: a template-based analysis, and a morphology-independent analysis.
In a binary black hole merger, it is known that the inspiral portion of the waveform corresponds to two distinct horizons orbiting each other, and the merger and ringdown signals correspond to the final horizon being formed and settling down to equil