ﻻ يوجد ملخص باللغة العربية
This paper addresses the question whether there are numerical schemes for constant-coefficient advection problems that can yield convergent solutions for an infinite time horizon. The motivation is that such methods may serve as building blocks for long-time accurate solutions in more complex advection-dominated problems. After establishing a new notion of convergence in an infinite time limit of numerical methods, we first show that linear methods cannot meet this convergence criterion. Then we present a new numerical methodology, based on a nonlinear jet scheme framework. We show that these methods do satisfy the new convergence criterion, thus establishing that numerical methods exist that converge on an infinite time horizon, and demonstrate the long-time accuracy gains incurred by this property.
In this paper, we present a numerical verification method of solutions for nonlinear parabolic initial boundary value problems. Decomposing the problem into a nonlinear part and an initial value part, we apply Nakaos projection method, which is based
This article is concerned with the derivation of numerical reconstruction schemes for the inverse moving source problem on determining source profiles in (time-fractional) evolution equations. As a continuation of the theoretical result on the unique
A study is presented on the convergence of the computation of coupled advection-diffusion-reaction equations. In the computation, the equations with different coefficients and even types are assigned in two subdomains, and Schwarz iteration is made b
Infinite-dimensional Newton methods can be effectively used to derive numerical proofs of the existence of solutions to partial differential equations (PDEs). In computer-assisted proofs of PDEs, the original problem is transformed into the infinite
In this paper, by employing the asymptotic method, we prove the existence and uniqueness of a smoothing solution for a singularly perturbed Partial Differential Equation (PDE) with a small parameter. As a by-product, we obtain a reduced PDE model wit