ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical schemes for reconstructing profiles of moving sources in (time-fractional) evolution equations

78   0   0.0 ( 0 )
 نشر من قبل Yikan Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yikan Liu




اسأل ChatGPT حول البحث

This article is concerned with the derivation of numerical reconstruction schemes for the inverse moving source problem on determining source profiles in (time-fractional) evolution equations. As a continuation of the theoretical result on the uniqueness, we adopt a minimization procedure with regularization to construct iterative thresholding schemes for the reduced backward problems on recovering one or two unknown initial value(s). Moreover, an elliptic approach is proposed to solve a convection equation in the case of two profiles.



قيم البحث

اقرأ أيضاً

125 - Yu Cao , Jianfeng Lu 2021
We study a family of structure-preserving deterministic numerical schemes for Lindblad equations, and carry out detailed error analysis and absolute stability analysis. Both error and absolute stability analysis are validated by numerical examples.
Partial differential equations (PDEs) are used, with huge success, to model phenomena arising across all scientific and engineering disciplines. However, across an equally wide swath, there exist situations in which PDE models fail to adequately mode l observed phenomena or are not the best available model for that purpose. On the other hand, in many situations, nonlocal models that account for interaction occurring at a distance have been shown to more faithfully and effectively model observed phenomena that involve possible singularities and other anomalies. In this article, we consider a generic nonlocal model, beginning with a short review of its definition, the properties of its solution, its mathematical analysis, and specific concrete examples. We then provide extensive discussions about numerical methods, including finite element, finite difference, and spectral methods, for determining approximate solutions of the nonlocal models considered. In that discussion, we pay particular attention to a special class of nonlocal models that are the most widely studied in the literature, namely those involving fractional derivatives. The article ends with brief considerations of several modeling and algorithmic extensions which serve to show the wide applicability of nonlocal modeling.
High-precision numerical scheme for nonlinear hyperbolic evolution equations is proposed based on the spectral method. The detail discretization processes are discussed in case of one-dimensional Klein-Gordon equations. In conclusion, a numerical sch eme with the order of total calculation cost $O(N log 2N)$ is proposed. As benchmark results, the relation between the numerical precision and the discretization unit size are demonstrated.
This article is concerned with two inverse problems on determining moving source profile functions in evolution equations with a derivative order $alphain(0,2]$ in time. In the first problem, the sources are supposed to move along known straight line s, and we suitably choose partial interior observation data in finite time. Reducing the problems to the determination of initial values, we prove the unique determination of one and two moving source profiles for $0<alphale1$ and $1<alphale2$, respectively. In the second problem, the orbits of moving sources are assumed to be known, and we consider the full lateral Cauchy data. At the cost of infinite observation time, we prove the unique determination of one moving source profile by constructing test functions.
This paper addresses the question whether there are numerical schemes for constant-coefficient advection problems that can yield convergent solutions for an infinite time horizon. The motivation is that such methods may serve as building blocks for l ong-time accurate solutions in more complex advection-dominated problems. After establishing a new notion of convergence in an infinite time limit of numerical methods, we first show that linear methods cannot meet this convergence criterion. Then we present a new numerical methodology, based on a nonlinear jet scheme framework. We show that these methods do satisfy the new convergence criterion, thus establishing that numerical methods exist that converge on an infinite time horizon, and demonstrate the long-time accuracy gains incurred by this property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا