ترغب بنشر مسار تعليمي؟ اضغط هنا

Survivor bias: divergent fates of the Solar Systems ejected vs. persisting planetesimals

124   0   0.0 ( 0 )
 نشر من قبل Sean Raymond
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The orbital architecture of the Solar System is thought to have been sculpted by a dynamical instability among the giant planets. During the instability a primordial outer disk of planetesimals was destabilized and ended up on planet-crossing orbits. Most planetesimals were ejected into interstellar space but a fraction were trapped on stable orbits in the Kuiper belt and Oort cloud. We use a suite of N-body simulations to map out the diversity of planetesimals dynamical pathways. We focus on two processes: tidal disruption from very close encounters with a giant planet, and loss of surface volatiles from repeated passages close to the Sun. We show that the rate of tidal disruption is more than a factor of two higher for ejected planetesimals than for surviving objects in the Kuiper belt or Oort cloud. Ejected planetesimals are preferentially disrupted by Jupiter and surviving ones by Neptune. Given that the gas giants contracted significantly as they cooled but the ice giants did not, taking into account the thermal evolution of the giant planets decreases the disruption rate of ejected planetesimals. The frequency of volatile loss and extinction is far higher for ejected planetesimals than for surviving ones and is not affected by the giant planets contraction. Even if all interstellar objects were ejected from Solar System-like systems, our analysis suggests that their physical properties should be more diverse than those of Solar System small bodies as a result of their divergent dynamical histories. This is consistent with the characteristics of the two currently-known interstellar objects.



قيم البحث

اقرأ أيضاً

Oumuamua was discovered passing through our Solar System on a hyperbolic orbit. It presents an apparent contradiction, with colors similar to those of volatile-rich Solar System bodies but with no visible outgassing or activity during its close appro ach to the Sun. Here we show that this contradiction can be explained by the dynamics of planetesimal ejection by giant planets. We propose that Oumuamua is an extinct fragment of a comet-like planetesimal born in a planet-forming disk that also formed Neptune- to Jupiter-mass giant planets. On its pathway to ejection Oumuamuas parent body underwent a close encounter with a giant planet and was tidally disrupted into small pieces, similar to comet Shoemaker-Levy 9s disruption after passing close to Jupiter. We use dynamical simulations to show that 0.1-1% of cometary planetesimals undergo disruptive encounters prior to ejection. Rocky asteroidal planetesimals are unlikely to disrupt due to their higher densities. After disruption, the bulk of fragments undergo enough close passages to their host stars to lose their surface volatiles and become extinct. Planetesimal fragments such as Oumuamua contain little of the mass in the population of interstellar objects but dominate by number. Our model makes predictions that will be tested in the coming decade by LSST.
Geochemical and astronomical evidence demonstrate that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar prot oplanetary disk influenced the timing of protoplanet formation and their internal evolution. Migration of the water snow line can generate two distinct bursts of planetesimal formation that sample different source regions. These reservoirs evolve in divergent geophysical modes and develop distinct volatile contents, consistent with constraints from accretion chronology, thermo-chemistry, and the mass divergence of inner and outer Solar System. Our simulations suggest that the compositional fractionation and isotopic dichotomy of the Solar System was initiated by the interplay between disk dynamics, heterogeneous accretion, and internal evolution of forming protoplanets.
There is a long-standing debate regarding the origin of the terrestrial planets water as well as the hydrated C-type asteroids. Here we show that the inner Solar Systems water is a simple byproduct of the giant planets formation. Giant planet cores a ccrete gas slowly until the conditions are met for a rapid phase of runaway growth. As a gas giants mass rapidly increases, the orbits of nearby planetesimals are destabilized and gravitationally scattered in all directions. Under the action of aerodynamic gas drag, a fraction of scattered planetesimals are deposited onto stable orbits interior to Jupiters. This process is effective in populating the outer main belt with C-type asteroids that originated from a broad (5-20 AU-wide) region of the disk. As the disk starts to dissipate, scattered planetesimals reach sufficiently eccentric orbits to cross the terrestrial planet region and deliver water to the growing Earth. This mechanism does not depend strongly on the giant planets orbital migration history and is generic: whenever a giant planet forms it invariably pollutes its inner planetary system with water-rich bodies.
Context. Circumstellar disks are known to contain a significant mass in dust ranging from micron to centimeter size. Meteorites are evidence that individual grains of those sizes were collected and assembled into planetesimals in the young solar syst em. Aims. We assess the efficiency of dust collection of a swarm of non-drifting planetesimals {rev with radii ranging from 1 to $10^3$,km and beyond. Methods. We calculate the collision probability of dust drifting in the disk due to gas drag by planetesimal accounting for several regimes depending on the size of the planetesimal, dust, and orbital distance: the geometric, Safronov, settling, and three-body regimes. We also include a hydrodynamical regime to account for the fact that small grains tend to be carried by the gas flow around planetesimals. Results. We provide expressions for the collision probability of dust by planetesimals and for the filtering efficiency by a swarm of planetesimals. For standard turbulence conditions (i.e., a turbulence parameter $alpha=10^{-2}$), filtering is found to be inefficient, meaning that when crossing a minimum-mass solar nebula (MMSN) belt of planetesimals extending between 0.1 AU and 35 AU most dust particles are eventually accreted by the central star rather than colliding with planetesimals. However, if the disk is weakly turbulent ($alpha=10^{-4}$) filtering becomes efficient in two regimes: (i) when planetesimals are all smaller than about 10 km in size, in which case collisions mostly take place in the geometric regime; and (ii) when planetary embryos larger than about 1000 km in size dominate the distribution, have a scale height smaller than one tenth of the gas scale height, and dust is of millimeter size or larger in which case most collisions take place in the settling regime. These two regimes have very different properties: we find that the local filtering efficiency $x_{filter,MMSN}$ scales with $r^{-7/4}$ (where $r$ is the orbital distance) in the geometric regime, but with $r^{-1/4}$ to $r^{1/4}$ in the settling regime. This implies that the filtering of dust by small planetesimals should occur close to the central star and with a short spread in orbital distances. On the other hand, the filtering by embryos in the settling regime is expected to be more gradual and determined by the extent of the disk of embryos. Dust particles much smaller than millimeter size tend only to be captured by the smallest planetesimals because they otherwise move on gas streamlines and their collisions take place in the hydrodynamical regime. Conclusions. Our results hint at an inside-out formation of planetesimals in the infant solar system because small planetesimals in the geometrical limit can filter dust much more efficiently close to the central star. However, even a fully-formed belt of planetesimals such as the MMSN only marginally captures inward-drifting dust and this seems to imply that dust in the protosolar disk has been filtered by planetesimals even smaller than 1 km (not included in this study) or that it has been assembled into planetesimals by other mechanisms (e.g., orderly growth, capture into vortexes). Further refinement of our work concerns, among other things: a quantitative description of the transition region between the hydro and settling regimes; an assessment of the role of disk turbulence for collisions, in particular in the hydro regime; and the coupling of our model to a planetesimal formation model.
We report detection of quasi-periodic (1.5 day) dimming of HD 240779, the solar-mass primary in a 5 visual binary (also TIC 284730577), by the Transiting Exoplanet Survey Satellite. This dimming, as has been shown for other dipper stars, is likely du e to occultation by circumstellar dust. The barycentric space motion, lithium abundance, rotation, and chromospheric emission of the stars in this system point to an age of ~125 Myr, and possible membership in the AB Doradus moving group. As such it occupies an important but poorly explored intermediate regime of stars with transient dimming between young stellar objects in star forming regions and main sequence stars, and between UX Orionis-type Ae/Be stars and M-type dippers. HD 240779, but not its companion BD+10714B, has WISE-detected excess infrared emission at 12 and 22 microns indicative of circumstellar dust. We propose that infrared emission is produced by collisions of planetesimals during clearing of a residual disk at the end of rocky planet formation, and that quasi-periodic dimming is produced by the rapid disintegration of a 100 km planetesimal near the silicate evaporation radius. Further studies of this and similar systems will illuminate a poorly understood final phase of rocky planet formation like that which produced the inner Solar System.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا