ترغب بنشر مسار تعليمي؟ اضغط هنا

The physics case for an electron-muon collider

65   0   0.0 ( 0 )
 نشر من قبل Jie Xiao
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An electron-muon collider with an asymmetric collision profile targeting multi-ab$^{-1}$ integrated luminosity is proposed. This novel collider, operating at collisions energies of e.g. 20-200 GeV, 50-1000 GeV and 100-3000 GeV, would be able to probe charged lepton flavor violation and measure Higgs boson properties precisely. The collision of an electron and muon beam leads to less physics background compared with either an electron-electron or a muon-muon collider, since electron-muon interactions proceed mostly through higher order vector boson fusion and vector boson scattering processes. The asymmetric collision profile results in collision products that are boosted towards the electron beam side, which can be exploited to reduce beam-induced background from the muon beam to a large extent. With this in mind, one can imagine a lepton collider complex, starting from colliding order 10 GeV electron and muon beams for the first time in history and to probe charged lepton flavor violation, then to be upgraded to a collider with 50-100 GeV electron and 1-3 TeV muon beams to measure Higgs properties and search for new physics, and finally to be transformed to a TeV scale muon muon collider. The cost should vary from order 100 millions to a few billion dollars, corresponding to different stages, which make the funding situation more practical.



قيم البحث

اقرأ أيضاً

A polarized $ep/eA$ collider (Electron--Ion Collider, or EIC), with polarized proton and light-ion beams and unpolarized heavy-ion beams with a variable center--of--mass energy $sqrt{s} sim 20$ to $sim100$~GeV (upgradable to $sim 150$ GeV) and a lumi nosity up to $sim 10^{34} , textrm{cm}^{-2} textrm{s}^{-1}$, would be uniquely suited to address several outstanding questions of Quantum Chromodynamics, and thereby lead to new qualitative and quantitative information on the microscopic structure of hadrons and nuclei. During this meeting at Jefferson Lab we addressed recent theoretical and experimental developments in the spin and the three--dimensional structure of the nucleon (sea quark and gluon spatial distributions, orbital motion, polarization, and their correlations). This mini--review contains a short update on progress in these areas since the EIC White paper~cite{Accardi:2012qut}.
We propose the construction of a compact Muon Collider Higgs Factory. Such a machine can produce up to sim 14,000 at 8times 10^{31} cm^-2 sec^-1 clean Higgs events per year, enabling the most precise possible measurement of the mass, width and Higgs-Yukawa coupling constants.
In everyday research, it is tacitly assumed that the scattering cross-sections have fixed values for the given particle species, centre-of-mass energy, and particle polarizations. However, this assumption has been called into question after several o bservations of suppression of high-energy bremsstrahlung. This process will play a major role in experiments at the future Electron-Ion Collider, and we show here how variations of the bremsstrahlung cross-section can be profoundly studied there using the lateral beam displacements. In particular, we predict very strong increase of the observed cross-sections for large beam separations. We also discuss the relation of these elusive effects to other quantum phenomena occurring over macroscopic distances. In this context, spectacular and possibly useful properties of the coherent bremsstrahlung at the EIC are also evaluated.
The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. In this paper a layout of a positron driven muon source known as the Low EMitt ance Muon Accelerator (LEMMA) concept is presented. The positron beam, stored in a ring with high energy acceptance and low emittance, is extracted and driven to a multi-target system, to produce muon pairs at threshold. This solution alleviates the issues related to the power deposited and the integrated Peak Energy Density Deposition (PEDD) on the targets. Muons produced in the multi-target system will then be accumulated before acceleration and injection in the collider. A multi-target line lattice has been designed to cope with the focusing of both the positron and muon beams. Studies on the number, material and thickness of the targets have been carried out. A general layout of the overall scheme and a description is presented, as well as plans for future R&D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا